Common Spectral Properties of Bounded Right Linear Operators AC and BA in the Quaternionic Setting

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Rachid Arzini, Ali Jaatit
{"title":"Common Spectral Properties of Bounded Right Linear Operators AC and BA in the Quaternionic Setting","authors":"Rachid Arzini,&nbsp;Ali Jaatit","doi":"10.1007/s00006-024-01315-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a two-sided quaternionic Banach space and let <span>\\(A, B, C: X \\longrightarrow X\\)</span> be bounded right linear quaternionic operators such that <span>\\(ACA=ABA\\)</span>. Let <i>q</i> be a non-zero quaternion. In this paper, we investigate the common properties of <span>\\((AC)^{2}-2Re(q)AC+|q|^2I\\)</span> and <span>\\((BA)^{2}-2Re(q)BA+|q|^2I\\)</span> where <i>I</i> stands for the identity operator on <i>X</i>. In particular, we show that </p><div><div><span>$$\\begin{aligned} \\sigma ^{S}_{{\\mathcal {F}}}(AC)\\backslash \\{0\\} = \\sigma ^{S}_{{\\mathcal {F}}}(BA)\\backslash \\{0\\} \\end{aligned}$$</span></div></div><p>where <span>\\(\\sigma ^{S}_{{\\mathcal {F}}}(.)\\)</span> is a distinguished part of the spherical spectrum.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01315-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a two-sided quaternionic Banach space and let \(A, B, C: X \longrightarrow X\) be bounded right linear quaternionic operators such that \(ACA=ABA\). Let q be a non-zero quaternion. In this paper, we investigate the common properties of \((AC)^{2}-2Re(q)AC+|q|^2I\) and \((BA)^{2}-2Re(q)BA+|q|^2I\) where I stands for the identity operator on X. In particular, we show that

$$\begin{aligned} \sigma ^{S}_{{\mathcal {F}}}(AC)\backslash \{0\} = \sigma ^{S}_{{\mathcal {F}}}(BA)\backslash \{0\} \end{aligned}$$

where \(\sigma ^{S}_{{\mathcal {F}}}(.)\) is a distinguished part of the spherical spectrum.

四元数背景下有界右线性算子 AC 和 BA 的共谱特性
让 X 是一个双面四元数的巴拿赫空间,并让(A, B, C: X \longrightarrow X\ )是有界的右线性四元数算子,使得(ACA=ABA)。让 q 是一个非零四元数。本文将研究 \((AC)^{2}-2Re(q)AC+|q|^2I\) 和 \((BA)^{2}-2Re(q)BA+|q|^2I\) 的共同性质,其中 I 代表 X 上的同一算子。\sigma ^{S}_{{\mathcal {F}}(AC)\backslash \{0\} = \sigma ^{S}_{{\mathcal {F}}(BA)\backslash \{0\}\end{aligned}$$其中 \(\sigma^{S}_{\mathcal {F}}(.)\) 是球谱的一个突出部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信