Guest Editorial Special Issue on Microfluidic Systems for Molecular Communications

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Werner Haselmayr;Yansha Deng;Tuna Tugcu;Ali Salehi-Reyhani
{"title":"Guest Editorial Special Issue on Microfluidic Systems for Molecular Communications","authors":"Werner Haselmayr;Yansha Deng;Tuna Tugcu;Ali Salehi-Reyhani","doi":"10.1109/TMBMC.2024.3369486","DOIUrl":null,"url":null,"abstract":"Molecular communications (MC) is an emerging field, inspired by nature (e.g., endocrine signaling), that aims to use molecules to encode information. MC is attracting increasing attention as an unconventional solution to challenges posed in environments where conventional electromagnetic-based communication is not feasible or detrimental, such as inside the human body. MC is rapidly becoming a powerful tool that has the potential to drive transformative applications in chemistry, biology and medicine, and identified a key enabling communication method for the Internet of Bio-Nano Things (IoBNT). Due to the focus on energy efficiency and bio-compatibility it paves the way for efficient and reliable communication at micro- and nanoscale.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 1","pages":"144-146"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10473609","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10473609/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular communications (MC) is an emerging field, inspired by nature (e.g., endocrine signaling), that aims to use molecules to encode information. MC is attracting increasing attention as an unconventional solution to challenges posed in environments where conventional electromagnetic-based communication is not feasible or detrimental, such as inside the human body. MC is rapidly becoming a powerful tool that has the potential to drive transformative applications in chemistry, biology and medicine, and identified a key enabling communication method for the Internet of Bio-Nano Things (IoBNT). Due to the focus on energy efficiency and bio-compatibility it paves the way for efficient and reliable communication at micro- and nanoscale.
分子通讯微流控系统特刊特邀编辑
分子通信(MC)是一个新兴领域,其灵感来源于自然界(如内分泌信号),旨在利用分子来编码信息。在传统电磁通信不可行或有害的环境中(如人体内部),分子通信作为一种非常规的解决方案,正吸引着越来越多的关注。MC 正迅速成为一种强大的工具,有可能推动化学、生物和医学领域的变革性应用,并被确定为生物纳米物联网 (IoBNT) 的一种关键使能通信方法。由于注重能效和生物兼容性,它为微米和纳米尺度的高效可靠通信铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信