{"title":"Individual Adaptive Regulation Strategy Inspired by Artificial Fish Swarm Algorithm for Tumor Targeting","authors":"Yue Sun;Shanchao Wen;Shaolong Shi;Yifan Chen","doi":"10.1109/TMBMC.2024.3361251","DOIUrl":null,"url":null,"abstract":"The use of nanoparticles for tumor-targeted therapy has become an emergent topic in molecular communications due to the similarity in information propagation and drug delivery. This paper introduces a novel approach called individual adaptive regulation strategy (IARS) to enhance tumor targeting, drawing inspiration from the collective behavior of fish swarms. This approach does not require any prior knowledge of tumor location. The goal is to leverage the intelligence and adaptability of fish swarms to improve drug delivery efficiency and effectiveness and enhance the early-stage tumor detection rate. The approach integrates the perceptual information of nanoswimmers (NSs) with the biological gradient fields (BGFs) induced by tumors, which departs from the existing approaches that rely solely on the information perception of a single nanoparticle to the BGFs. IARS can dynamically adjust the motion direction of NSs in response to the characteristics of the tumor microenvironment. Extensive simulations and experiments demonstrate the efficacy and resilience of the proposed strategy, indicating promising outcomes in cancer treatment through targeted drug delivery.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10418511/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The use of nanoparticles for tumor-targeted therapy has become an emergent topic in molecular communications due to the similarity in information propagation and drug delivery. This paper introduces a novel approach called individual adaptive regulation strategy (IARS) to enhance tumor targeting, drawing inspiration from the collective behavior of fish swarms. This approach does not require any prior knowledge of tumor location. The goal is to leverage the intelligence and adaptability of fish swarms to improve drug delivery efficiency and effectiveness and enhance the early-stage tumor detection rate. The approach integrates the perceptual information of nanoswimmers (NSs) with the biological gradient fields (BGFs) induced by tumors, which departs from the existing approaches that rely solely on the information perception of a single nanoparticle to the BGFs. IARS can dynamically adjust the motion direction of NSs in response to the characteristics of the tumor microenvironment. Extensive simulations and experiments demonstrate the efficacy and resilience of the proposed strategy, indicating promising outcomes in cancer treatment through targeted drug delivery.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.