A fractal-fractional order Susceptible-Exposed-Infected-Recovered (SEIR) model with Caputo sense

Subrata Paul , Animesh Mahata , Manas Karak , Supriya Mukherjee , Santosh Biswas , Banamali Roy
{"title":"A fractal-fractional order Susceptible-Exposed-Infected-Recovered (SEIR) model with Caputo sense","authors":"Subrata Paul ,&nbsp;Animesh Mahata ,&nbsp;Manas Karak ,&nbsp;Supriya Mukherjee ,&nbsp;Santosh Biswas ,&nbsp;Banamali Roy","doi":"10.1016/j.health.2024.100317","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the intricacies of the COVID-19 pandemic by employing a four-compartment model with a fractal-fractional derivative based on Caputo concept. The analysis hinges on Schauder fixed point theorem, used to qualitatively examine the solutions and ascertain their existence and uniqueness within the model. The fundamental reproduction number is determined through the next-generation matrix approach. This study delves into the stability of equilibrium points and conducts a sensitivity analysis of model parameters. The equilibrium without infections is locally and globally stable when the basic reproduction number is less than 1. Also, this equilibrium becomes unstable when the basic reproduction number exceeds 1. Applying Lyapunov principles and the Routh–Hurwitz criteria, it is established that the endemic equilibrium point is globally stable for the basic reproduction number values greater than 1. The proposed model incorporates Ulam-Hyers stability through nonlinear functional analysis. Lagrange interpolation method estimates solutions for the fractal-fractional order COVID-19 model. Numerical simulations are performed using MATLAB software to exemplify the model behavior in the context of the Italian case study. Furthermore, fractal-fractional calculus techniques hold significant promise for comprehending and predicting the pandemic’s global dynamics in other countries.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100317"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000194/pdfft?md5=985b95aabaf9f43b119632e70f1bd861&pid=1-s2.0-S2772442524000194-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the intricacies of the COVID-19 pandemic by employing a four-compartment model with a fractal-fractional derivative based on Caputo concept. The analysis hinges on Schauder fixed point theorem, used to qualitatively examine the solutions and ascertain their existence and uniqueness within the model. The fundamental reproduction number is determined through the next-generation matrix approach. This study delves into the stability of equilibrium points and conducts a sensitivity analysis of model parameters. The equilibrium without infections is locally and globally stable when the basic reproduction number is less than 1. Also, this equilibrium becomes unstable when the basic reproduction number exceeds 1. Applying Lyapunov principles and the Routh–Hurwitz criteria, it is established that the endemic equilibrium point is globally stable for the basic reproduction number values greater than 1. The proposed model incorporates Ulam-Hyers stability through nonlinear functional analysis. Lagrange interpolation method estimates solutions for the fractal-fractional order COVID-19 model. Numerical simulations are performed using MATLAB software to exemplify the model behavior in the context of the Italian case study. Furthermore, fractal-fractional calculus techniques hold significant promise for comprehending and predicting the pandemic’s global dynamics in other countries.

具有卡普托感的分形-分数阶易感-暴露-感染-恢复(SEIR)模型
本研究采用基于卡普托概念的分形-分形导数四室模型,探讨了 COVID-19 大流行病的复杂性。分析以 Schauder 定点定理为基础,用于定性研究解,并确定其在模型中的存在性和唯一性。基本重现数是通过新一代矩阵方法确定的。本研究深入探讨了平衡点的稳定性,并对模型参数进行了敏感性分析。当基本繁殖数小于 1 时,无感染平衡点在局部和全局上都是稳定的。应用 Lyapunov 原理和 Routh-Hurwitz 准则,可以确定当基本繁殖数大于 1 时,流行平衡点是全局稳定的。拉格朗日插值法估计了分形-分数阶 COVID-19 模型的解。使用 MATLAB 软件进行了数值模拟,在意大利案例研究中对模型行为进行了示范。此外,分形-分数微积分技术在理解和预测其他国家的大流行病全球动态方面也大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信