Combined cellular and gene therapy to treat primary ciliary dyskinesia

IF 0.5 4区 医学 Q4 RESPIRATORY SYSTEM
C. Bourdais , A. Nasri , F. Foisset , I. Vachier , A. Bourdin , S. Assou , J. De Vos
{"title":"Combined cellular and gene therapy to treat primary ciliary dyskinesia","authors":"C. Bourdais ,&nbsp;A. Nasri ,&nbsp;F. Foisset ,&nbsp;I. Vachier ,&nbsp;A. Bourdin ,&nbsp;S. Assou ,&nbsp;J. De Vos","doi":"10.1016/j.rmr.2024.01.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Primary ciliary dyskinesia (PCD) is a genetic disease caused by mutations that alter cilia beating, including in the respiratory airways, resulting in impaired mucus clearance and severe morbidity as well as increased mortality. We hypothesized that we could restore bronchial cilia beating with genetically corrected iPSC differentiated into bronchial progenitors.</p></div><div><h3>Methods</h3><p>Our project aims to assess the ability of a corrected iPSC line to functionally repair pathological models in vitro. We generated a PCD patient iPSC line reprogrammed using Sendai viruses, and the corresponding CRISPR/Cas9 corrected cell line, as well a wild-type iPSC line and its CRISPR/Cas9 mutated counterpart. We also generated a GFP-iPSC line expressing the fluorescent GFP protein under the human elongation factor 1 alpha promoter (EF1a), allowing us to study the engraftment ability of GFP bronchial stem cells on a control epithelium model. To assess the efficiency of different bronchial progenitors to engraft a bronchial epithelium, we used our previously published air–liquid interface bronchial epithelium model (iALI).</p></div><div><h3>Results</h3><p>One main issue is to identify the competent cell type for regeneration of the adult bronchial epithelium. Indeed, there are several cell types constituting the bronchial epithelium, as well as several developmentally bronchial progenitor cells that could be considered. Our iALI differentiation process mimics the embryonic development and thus the iALI model may provide any cell type from the definitive endoderm to the mature bronchial epithelium. Our results suggest that lung progenitors at the ventralized anterior foregut endoderm stage, could be the most efficient cells for engraftment. Besides, their self-renewal ability and their capacity to differentiate into the different cell type spectrum of the bronchial epithelium are promising for the development of a long-term and efficient therapy. The second issue for bronchial epithelium cell replacement would be to determine the best strategy to erode the bronchi prior to cell therapy. Such an erosion is considered necessary to promote cell engraftment because of the barrier function of the intact bronchial epithelium and the lack of selection advantage from the corrected cells. To this end, we compared mechanical, chemical and enzymatic erosion strategies on the iALI model. Our results suggest a better efficiency with enzymatic erosion, showing a homogeneous detachment of the cells and a better engraftment of cells from the GFP-iPSC line.</p></div><div><h3>Conclusion</h3><p>In conclusion, engraftment of corrected lung progenitors to enzymatically eroded bronchial epithelium seems to be a promising therapeutic strategy to treat PCD. Future experiments will refine the best condition regarding enzymatic solution (concentration, time exposure) and graft cell number to assure functional recovery of the mucociliary clearance.</p></div>","PeriodicalId":21548,"journal":{"name":"Revue des maladies respiratoires","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue des maladies respiratoires","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0761842524000329","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Primary ciliary dyskinesia (PCD) is a genetic disease caused by mutations that alter cilia beating, including in the respiratory airways, resulting in impaired mucus clearance and severe morbidity as well as increased mortality. We hypothesized that we could restore bronchial cilia beating with genetically corrected iPSC differentiated into bronchial progenitors.

Methods

Our project aims to assess the ability of a corrected iPSC line to functionally repair pathological models in vitro. We generated a PCD patient iPSC line reprogrammed using Sendai viruses, and the corresponding CRISPR/Cas9 corrected cell line, as well a wild-type iPSC line and its CRISPR/Cas9 mutated counterpart. We also generated a GFP-iPSC line expressing the fluorescent GFP protein under the human elongation factor 1 alpha promoter (EF1a), allowing us to study the engraftment ability of GFP bronchial stem cells on a control epithelium model. To assess the efficiency of different bronchial progenitors to engraft a bronchial epithelium, we used our previously published air–liquid interface bronchial epithelium model (iALI).

Results

One main issue is to identify the competent cell type for regeneration of the adult bronchial epithelium. Indeed, there are several cell types constituting the bronchial epithelium, as well as several developmentally bronchial progenitor cells that could be considered. Our iALI differentiation process mimics the embryonic development and thus the iALI model may provide any cell type from the definitive endoderm to the mature bronchial epithelium. Our results suggest that lung progenitors at the ventralized anterior foregut endoderm stage, could be the most efficient cells for engraftment. Besides, their self-renewal ability and their capacity to differentiate into the different cell type spectrum of the bronchial epithelium are promising for the development of a long-term and efficient therapy. The second issue for bronchial epithelium cell replacement would be to determine the best strategy to erode the bronchi prior to cell therapy. Such an erosion is considered necessary to promote cell engraftment because of the barrier function of the intact bronchial epithelium and the lack of selection advantage from the corrected cells. To this end, we compared mechanical, chemical and enzymatic erosion strategies on the iALI model. Our results suggest a better efficiency with enzymatic erosion, showing a homogeneous detachment of the cells and a better engraftment of cells from the GFP-iPSC line.

Conclusion

In conclusion, engraftment of corrected lung progenitors to enzymatically eroded bronchial epithelium seems to be a promising therapeutic strategy to treat PCD. Future experiments will refine the best condition regarding enzymatic solution (concentration, time exposure) and graft cell number to assure functional recovery of the mucociliary clearance.

治疗原发性睫状肌运动障碍的细胞和基因联合疗法
导言原发性纤毛运动障碍(PCD)是一种遗传性疾病,由基因突变导致纤毛跳动发生改变,包括呼吸道中的纤毛跳动,从而导致粘液清除能力受损、严重的发病率和死亡率增加。我们假设,我们可以利用经基因校正分化成支气管祖细胞的 iPSC 来恢复支气管纤毛的跳动。我们利用仙台病毒重编程生成了一个 PCD 患者 iPSC 细胞系和相应的 CRISPR/Cas9 校正细胞系,还生成了一个野生型 iPSC 细胞系及其 CRISPR/Cas9 突变对应细胞系。我们还生成了在人类延伸因子1α启动子(EF1a)下表达荧光GFP蛋白的GFP-iPSC细胞系,从而可以研究GFP支气管干细胞在对照上皮细胞模型上的移植能力。为了评估不同支气管祖细胞移植支气管上皮的效率,我们使用了之前发表的气液界面支气管上皮模型(iALI)。事实上,支气管上皮有几种细胞类型,还有几种发育中的支气管祖细胞可以考虑。我们的 iALI 分化过程模拟了胚胎发育过程,因此 iALI 模型可提供从最终内胚层到成熟支气管上皮的任何细胞类型。我们的研究结果表明,腹侧前肠内胚层阶段的肺祖细胞可能是最有效的移植细胞。此外,它们的自我更新能力和分化成支气管上皮不同细胞类型谱的能力也为开发长期高效的疗法带来了希望。支气管上皮细胞替代的第二个问题是确定细胞治疗前侵蚀支气管的最佳策略。由于完整支气管上皮细胞具有屏障功能,而且修正细胞缺乏选择优势,因此这种侵蚀被认为是促进细胞移植所必需的。为此,我们在 iALI 模型上比较了机械、化学和酶侵蚀策略。我们的结果表明,酶侵蚀的效率更高,显示出细胞的均匀分离和来自 GFP-iPSC 株系的细胞更好的接种。未来的实验将完善有关酶溶液(浓度、暴露时间)和移植细胞数量的最佳条件,以确保粘膜纤毛清除功能的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revue des maladies respiratoires
Revue des maladies respiratoires 医学-呼吸系统
CiteScore
1.10
自引率
16.70%
发文量
168
审稿时长
4-8 weeks
期刊介绍: La Revue des Maladies Respiratoires est l''organe officiel d''expression scientifique de la Société de Pneumologie de Langue Française (SPLF). Il s''agit d''un média professionnel francophone, à vocation internationale et accessible ici. La Revue des Maladies Respiratoires est un outil de formation professionnelle post-universitaire pour l''ensemble de la communauté pneumologique francophone. Elle publie sur son site différentes variétés d''articles scientifiques concernant la Pneumologie : - Editoriaux, - Articles originaux, - Revues générales, - Articles de synthèses, - Recommandations d''experts et textes de consensus, - Séries thématiques, - Cas cliniques, - Articles « images et diagnostics », - Fiches techniques, - Lettres à la rédaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信