Yongtong Zhan , Guihao Wu , Xuhong Fan , Ze Fu , Yue Ni , Beini Sun , Hongce Chen , Tongsheng Chen , Xiaoping Wang
{"title":"YAP upregulates AMPKα1 to induce cancer cell senescence","authors":"Yongtong Zhan , Guihao Wu , Xuhong Fan , Ze Fu , Yue Ni , Beini Sun , Hongce Chen , Tongsheng Chen , Xiaoping Wang","doi":"10.1016/j.biocel.2024.106559","DOIUrl":null,"url":null,"abstract":"<div><p>Yes-associated protein (YAP)—a major effector protein of the Hippo pathway— regulates cell proliferation, differentiation, apoptosis, and senescence. Amp-activated protein kinase (AMPK) is a key sensor that monitors cellular nutrient supply and energy status. Although YAP and AMPK are considered to regulate cellular senescence, it is still unclear whether AMPK is involved in YAP-regulated cellular senescence. Here, we found that YAP promoted AMPKα1 aggregation and localization around mitochondria by co-transfecting CFP-YAP and YFP-AMPKα1 plasmids. Subsequent live cell fluorescence resonance energy transfer (FRET) assay did not exhibit direct interaction between YAP and AMPKα1. FRET, Co-immunoprecipitation, and western blot experiments revealed that YAP directly bound to TEAD, enhancing the expression of AMPKα1 and p-AMPKα. Treatment with verteporfin inhibited YAP’s binding to TEAD and reversed the elevated expression of AMPKα1 in the cells overexpressing CFP-YAP. Verteporfin also reduced the proportion of AMPKα1 puncta in the cells co-expressing CFP-YAP and YFP-AMPKα1. In addition, the AMPKα1 puncta were demonstrated to inhibit cell viability, autophagy, and proliferation, and ultimately promote cell senescence. In conclusion, YAP binds to TEAD to upregulate AMPKα1 and promotes the formation of AMPKα1 puncta around mitochondria under the condition of co-expression of CFP-YAP and YFP-AMPKα1, in which AMPKα1 puncta lead to cellular senescence.</p></div>","PeriodicalId":50335,"journal":{"name":"International Journal of Biochemistry & Cell Biology","volume":"170 ","pages":"Article 106559"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry & Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272524000505","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Yes-associated protein (YAP)—a major effector protein of the Hippo pathway— regulates cell proliferation, differentiation, apoptosis, and senescence. Amp-activated protein kinase (AMPK) is a key sensor that monitors cellular nutrient supply and energy status. Although YAP and AMPK are considered to regulate cellular senescence, it is still unclear whether AMPK is involved in YAP-regulated cellular senescence. Here, we found that YAP promoted AMPKα1 aggregation and localization around mitochondria by co-transfecting CFP-YAP and YFP-AMPKα1 plasmids. Subsequent live cell fluorescence resonance energy transfer (FRET) assay did not exhibit direct interaction between YAP and AMPKα1. FRET, Co-immunoprecipitation, and western blot experiments revealed that YAP directly bound to TEAD, enhancing the expression of AMPKα1 and p-AMPKα. Treatment with verteporfin inhibited YAP’s binding to TEAD and reversed the elevated expression of AMPKα1 in the cells overexpressing CFP-YAP. Verteporfin also reduced the proportion of AMPKα1 puncta in the cells co-expressing CFP-YAP and YFP-AMPKα1. In addition, the AMPKα1 puncta were demonstrated to inhibit cell viability, autophagy, and proliferation, and ultimately promote cell senescence. In conclusion, YAP binds to TEAD to upregulate AMPKα1 and promotes the formation of AMPKα1 puncta around mitochondria under the condition of co-expression of CFP-YAP and YFP-AMPKα1, in which AMPKα1 puncta lead to cellular senescence.
期刊介绍:
IJBCB publishes original research articles, invited reviews and in-focus articles in all areas of cell and molecular biology and biomedical research.
Topics of interest include, but are not limited to:
-Mechanistic studies of cells, cell organelles, sub-cellular molecular pathways and metabolism
-Novel insights into disease pathogenesis
-Nanotechnology with implication to biological and medical processes
-Genomics and bioinformatics