Extracellular Vesicles and Their Correlation with Inflammatory Factors in an Experimental Model of Steatotic Liver Disease Associated with Metabolic Dysfunction.
Melina Belén Keingeski, Larisse Longo, Vitória Brum da Silva Nunes, Fabrício Figueiró, Danieli Rosane Dallemole, Adriana Raffin Pohlmann, Thalia Michele Vier Schmitz, Patrícia Luciana da Costa Lopez, Mário Reis Álvares-da-Silva, Carolina Uribe-Cruz
{"title":"Extracellular Vesicles and Their Correlation with Inflammatory Factors in an Experimental Model of Steatotic Liver Disease Associated with Metabolic Dysfunction.","authors":"Melina Belén Keingeski, Larisse Longo, Vitória Brum da Silva Nunes, Fabrício Figueiró, Danieli Rosane Dallemole, Adriana Raffin Pohlmann, Thalia Michele Vier Schmitz, Patrícia Luciana da Costa Lopez, Mário Reis Álvares-da-Silva, Carolina Uribe-Cruz","doi":"10.1089/met.2023.0284","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background/Aims:</i></b> Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. <b><i>Methods:</i></b> Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. <b><i>Results:</i></b> Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (<i>P</i> < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (<i>P</i> < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (<i>Il</i>)<i>6</i> (<i>r</i><sup>2</sup> = 0.685, <i>P</i> < 0.05), <i>Il1b</i> (<i>r</i><sup>2</sup> = 0.697, <i>P</i> < 0.05) and tumor necrosis factor-alpha (<i>Tnfa</i>; <i>r</i><sup>2</sup> = 0.636, <i>P</i> < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and <i>Il10</i> in MASLD-28 (<i>r</i><sup>2</sup> = 0.762, <i>P</i> < 0.05). <b><i>Conclusion:</i></b> The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.</p>","PeriodicalId":18405,"journal":{"name":"Metabolic syndrome and related disorders","volume":" ","pages":"394-401"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic syndrome and related disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/met.2023.0284","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Aims: Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. Methods: Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. Results: Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (P < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (P < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (Il)6 (r2 = 0.685, P < 0.05), Il1b (r2 = 0.697, P < 0.05) and tumor necrosis factor-alpha (Tnfa; r2 = 0.636, P < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and Il10 in MASLD-28 (r2 = 0.762, P < 0.05). Conclusion: The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.
期刊介绍:
Metabolic Syndrome and Related Disorders is the only peer-reviewed journal focusing solely on the pathophysiology, recognition, and treatment of this major health condition. The Journal meets the imperative for comprehensive research, data, and commentary on metabolic disorder as a suspected precursor to a wide range of diseases, including type 2 diabetes, cardiovascular disease, stroke, cancer, polycystic ovary syndrome, gout, and asthma.
Metabolic Syndrome and Related Disorders coverage includes:
-Insulin resistance-
Central obesity-
Glucose intolerance-
Dyslipidemia with elevated triglycerides-
Low HDL-cholesterol-
Microalbuminuria-
Predominance of small dense LDL-cholesterol particles-
Hypertension-
Endothelial dysfunction-
Oxidative stress-
Inflammation-
Related disorders of polycystic ovarian syndrome, fatty liver disease (NASH), and gout