Chapter 8: Searching for Life Beyond Earth.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2024-03-01 DOI:10.1089/ast.2021.0104
Luoth Chou, Natalie Grefenstette, Schuyler Borges, Tristan Caro, Enrico Catalano, Chester E Harman, Jordan McKaig, Chinmayee Govinda Raj, Gareth Trubl, Amber Young
{"title":"Chapter 8: Searching for Life Beyond Earth.","authors":"Luoth Chou, Natalie Grefenstette, Schuyler Borges, Tristan Caro, Enrico Catalano, Chester E Harman, Jordan McKaig, Chinmayee Govinda Raj, Gareth Trubl, Amber Young","doi":"10.1089/ast.2021.0104","DOIUrl":null,"url":null,"abstract":"<p><p>The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted <i>in situ</i> to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 S1","pages":"S164-S185"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2021.0104","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.

第 8 章:寻找地球之外的生命。
要寻找地球以外的生命,就必须对生物特征进行严格而全面的研究,即生命产生的各类可观察到的印记。这些印记以及我们利用先进仪器探测它们的能力,是我们了解宇宙中生命的存在和丰富程度的关键。生物特征是与过去或现在的生命有关的化学或物理特征,可能包括元素和分子的单独或组合分布,以及与非生物背景截然不同的结构成分或物理过程的变化。用于在其他行星上寻找生命的科学和技术战略包括可以在行星体上就地进行的战略和可以远程观测的战略。本章讨论了可用于利用机器人探索直接在其他行星体上寻找生物特征的众多策略,包括那些已经部署到其他行星体、目前正在开发用于飞行或将成为未来任务关键技术的策略。还介绍了利用现有和计划中的地面和空间望远镜进行远程观测的搜索战略。来自光谱吸收、发射或透射特征的证据可用于搜索远程生物特征和技术特征。提高我们对生物特征及其在地球上的产生、转化和保存的认识,可以加强我们探测其他行星上生命的搜索工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信