Chapter 7: Assessing Habitability Beyond Earth.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2024-03-01 DOI:10.1089/ast.2021.0097
M J Styczinski, Z S Cooper, D M Glaser, O Lehmer, V Mierzejewski, J Tarnas
{"title":"Chapter 7: Assessing Habitability Beyond Earth.","authors":"M J Styczinski, Z S Cooper, D M Glaser, O Lehmer, V Mierzejewski, J Tarnas","doi":"10.1089/ast.2021.0097","DOIUrl":null,"url":null,"abstract":"<p><p>All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 S1","pages":"S143-S163"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2021.0097","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.

第 7 章:评估地球之外的可居住性。
地球上所有已知的生命都栖息在温度、化学成分、能量供应等介于某些极端条件之间的环境中(第 6 章)。太阳系内外的其他地方也可能存在类似的生命环境。目前在其他地方寻找生命的工作主要集中在那些现在或过去最有可能支持生命的环境,即潜在的宜居环境。关于宜居性的讨论必须基于我们对地球生命的了解,因为地球是我们唯一的例子。本章概述了地球上生命的已知和假定要求,并讨论了如何利用这些要求来评估太阳系内外行星天体的潜在宜居性。我们首先考虑生命的化学要求以及生命的存在可能对宜居条件产生的潜在反馈效应,然后考虑行星、恒星和时间对宜居性的要求。然后,我们回顾了有关太阳系和系外行星的潜在宜居性的知识状况,尤其关注火星、金星、木卫二和土卫二。在回顾每个天体的潜在宜居性的同时,我们还总结了最突出和最有影响的研究,这些研究为我们提供了关于在哪些地方可能发现宜居环境的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信