{"title":"Loss-cone stabilization in rotating mirrors: thresholds and thermodynamics","authors":"E.J. Kolmes, I.E. Ochs, N.J. Fisch","doi":"10.1017/s0022377824000205","DOIUrl":null,"url":null,"abstract":"In the limit of sufficiently fast rotation, rotating mirror traps are known to be stable against the loss-cone modes associated with conventional (non-rotating) mirrors. This paper calculates how quickly a mirror configuration must rotate in order for several of these modes to be stabilized (in particular, the high-frequency convective loss cone, drift cyclotron loss cone and Dory–Guest–Harris modes). Commonalities in the stabilization conditions for these modes then motivate a modified formulation of the Gardner free energy and diffusively accessible free energy to be used for systems in which the important modes have wavevectors that are orthogonal or nearly orthogonal to the magnetic field, as well as a modification to include the effects of a loss region in phase space.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"20 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000205","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
In the limit of sufficiently fast rotation, rotating mirror traps are known to be stable against the loss-cone modes associated with conventional (non-rotating) mirrors. This paper calculates how quickly a mirror configuration must rotate in order for several of these modes to be stabilized (in particular, the high-frequency convective loss cone, drift cyclotron loss cone and Dory–Guest–Harris modes). Commonalities in the stabilization conditions for these modes then motivate a modified formulation of the Gardner free energy and diffusively accessible free energy to be used for systems in which the important modes have wavevectors that are orthogonal or nearly orthogonal to the magnetic field, as well as a modification to include the effects of a loss region in phase space.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.