Generalized quasiorders and the Galois connection \({\textbf {End}}\)–\(\varvec{{{\,\textrm{gQuord}\,}}}\)

IF 0.6 4区 数学 Q3 MATHEMATICS
Danica Jakubíková-Studenovská, Reinhard Pöschel, Sándor Radeleczki
{"title":"Generalized quasiorders and the Galois connection \\({\\textbf {End}}\\)–\\(\\varvec{{{\\,\\textrm{gQuord}\\,}}}\\)","authors":"Danica Jakubíková-Studenovská,&nbsp;Reinhard Pöschel,&nbsp;Sándor Radeleczki","doi":"10.1007/s00012-024-00850-y","DOIUrl":null,"url":null,"abstract":"<div><p>Equivalence relations or, more general, quasiorders (i.e., reflexive and transitive binary relations) <span>\\(\\varrho \\)</span> have the property that an <i>n</i>-ary operation <i>f</i> preserves <span>\\(\\varrho ,\\)</span> i.e., <i>f</i> is a polymorphism of <span>\\(\\varrho ,\\)</span> if and only if each translation (i.e., unary polynomial function obtained from <i>f</i> by substituting constants) preserves <span>\\(\\varrho ,\\)</span> i.e., it is an endomorphism of <span>\\(\\varrho .\\)</span> We introduce a wider class of relations—called generalized quasiorders—of arbitrary arities with the same property. With these generalized quasiorders we can characterize all algebras whose clone of term operations is determined by its translations by the above property, what generalizes affine complete algebras. The results are based on the characterization of so-called u-closed monoids (i.e., the unary parts of clones with the above property) as Galois closures of the Galois connection <span>\\({\\textrm{End}}\\)</span>–<span>\\({{\\,\\textrm{gQuord}\\,}},\\)</span> i.e., as endomorphism monoids of generalized quasiorders. The minimal u-closed monoids are described explicitly.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00850-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00850-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Equivalence relations or, more general, quasiorders (i.e., reflexive and transitive binary relations) \(\varrho \) have the property that an n-ary operation f preserves \(\varrho ,\) i.e., f is a polymorphism of \(\varrho ,\) if and only if each translation (i.e., unary polynomial function obtained from f by substituting constants) preserves \(\varrho ,\) i.e., it is an endomorphism of \(\varrho .\) We introduce a wider class of relations—called generalized quasiorders—of arbitrary arities with the same property. With these generalized quasiorders we can characterize all algebras whose clone of term operations is determined by its translations by the above property, what generalizes affine complete algebras. The results are based on the characterization of so-called u-closed monoids (i.e., the unary parts of clones with the above property) as Galois closures of the Galois connection \({\textrm{End}}\)\({{\,\textrm{gQuord}\,}},\) i.e., as endomorphism monoids of generalized quasiorders. The minimal u-closed monoids are described explicitly.

Abstract Image

广义准绳与伽罗瓦连接 $${\textbf {End}}$ - $$\varvec{{\,\textrm{gQuord}\,}}$
等价关系或更一般的准等价关系(即反式和反式二元关系)具有这样的性质:n-一元运算 f 保留了 \(\varrho ,\) 即 f 是 \(\varrho ,\) 的多态性,当且仅当每个平移(即通过替换常量从 f 得到的一元多项式函数)保留了 \(\varrho ,\) 即它是\(\varrho ,\)的内态性、我们引入了一类更广泛的关系,即具有相同性质的任意数项的广义准绳(generalized quasiorders)。有了这些广义准序,我们就能描述所有其术语操作克隆由上述性质决定的平移的代数代数,也就是仿射完全代数的广义。这些结果基于所谓的u-封闭单体(即具有上述性质的克隆的一元部分)作为伽罗瓦连接\({\textrm{End}}\)-\({{\,\textrm{gQuord}\,},\)的伽罗瓦封闭的特征,即作为广义准阶的内态单体。我们将明确描述最小 u 闭单体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信