A. E. Zhukov, N. V. Kryzhanovskaya, I. S. Makhov, E. I. Moiseev, A. M. Nadtochiy, N. A. Fominykh, S. A. Mintairov, N. A. Kalyuzhyy, F. I. Zubov, M. V. Maximov
{"title":"Model for Speed Performance of Quantum-Dot Waveguide Photodiode","authors":"A. E. Zhukov, N. V. Kryzhanovskaya, I. S. Makhov, E. I. Moiseev, A. M. Nadtochiy, N. A. Fominykh, S. A. Mintairov, N. A. Kalyuzhyy, F. I. Zubov, M. V. Maximov","doi":"10.1134/s1063782623050184","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A model is proposed that makes it possible to analytically analyze the speed performance of a waveguide <i>p</i>–<i>i</i>–<i>n</i> photodiode with a light-absorbing region representing a multilayered array of quantum dots separated by undoped spacers. It is shown that there is an optimal number of layers of quantum dots, as well as an optimal thickness of the spacers, which provide the widest bandwidth. The possibility of achieving a frequency range (at the level of –3 dB) above 20 GHz for waveguide photodiodes based on InGaAs/GaAs quantum well-dots is shown.</p>","PeriodicalId":21760,"journal":{"name":"Semiconductors","volume":"151 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063782623050184","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
A model is proposed that makes it possible to analytically analyze the speed performance of a waveguide p–i–n photodiode with a light-absorbing region representing a multilayered array of quantum dots separated by undoped spacers. It is shown that there is an optimal number of layers of quantum dots, as well as an optimal thickness of the spacers, which provide the widest bandwidth. The possibility of achieving a frequency range (at the level of –3 dB) above 20 GHz for waveguide photodiodes based on InGaAs/GaAs quantum well-dots is shown.
期刊介绍:
Publishes the most important work in semiconductor research in the countries of the former Soviet Union. Covers semiconductor theory, transport phenomena in semiconductors, optics, magnetooptics, and electrooptics of semiconductors, semiconductor lasers and semiconductor surface physics. The journal features an extensive book review section.