L. A. Snigirev, V. I. Ushanov, A. A. Ivanov, N. A. Bert, D. A. Kirilenko, M. A. Yagovkina, V. V. Preobrazhenskii, M. A. Putyato, B. P. Semyagin, I. A. Kasatkin, V. V. Chaldyshev
{"title":"Structure and Optical Properties of a Composite AsSb–Al0.6Ga0.4As0.97Sb0.03 Metamaterial","authors":"L. A. Snigirev, V. I. Ushanov, A. A. Ivanov, N. A. Bert, D. A. Kirilenko, M. A. Yagovkina, V. V. Preobrazhenskii, M. A. Putyato, B. P. Semyagin, I. A. Kasatkin, V. V. Chaldyshev","doi":"10.1134/s1063782623050160","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>epitaxial layers of Al<sub><i>x</i></sub>Ga<sub>1–<i>x</i></sub>As<sub>1–<i>y</i></sub> Sb<sub><i>y</i></sub> with an aluminum content <i>x ~</i> 60% and antimony content <i>y ~</i> 3% were successfully grown by molecular-beam epitaxy at low temperature. A developed system of AsSb nanoinclusions was formed in the semiconductor matrix by subsequent annealing. The extended transparency window of the obtained metamaterial allows us to document the absorption of light near the interband absorption edge of the Al<sub><i>x</i></sub>Ga<sub>1–<i>x</i></sub>As<sub>1–<i>y</i></sub>Sb<sub><i>y</i></sub> semiconductor matrix. Parameters of the observed extinction band allow us to attribute the optical absorption to the plasmon resonance in the system of AsSb nanoinclusions.</p>","PeriodicalId":21760,"journal":{"name":"Semiconductors","volume":"155 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063782623050160","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
epitaxial layers of AlxGa1–xAs1–y Sby with an aluminum content x ~ 60% and antimony content y ~ 3% were successfully grown by molecular-beam epitaxy at low temperature. A developed system of AsSb nanoinclusions was formed in the semiconductor matrix by subsequent annealing. The extended transparency window of the obtained metamaterial allows us to document the absorption of light near the interband absorption edge of the AlxGa1–xAs1–ySby semiconductor matrix. Parameters of the observed extinction band allow us to attribute the optical absorption to the plasmon resonance in the system of AsSb nanoinclusions.
期刊介绍:
Publishes the most important work in semiconductor research in the countries of the former Soviet Union. Covers semiconductor theory, transport phenomena in semiconductors, optics, magnetooptics, and electrooptics of semiconductors, semiconductor lasers and semiconductor surface physics. The journal features an extensive book review section.