Isogeometric Analysis for the Arbitrary AFG Microbeam with Two-Phase Nonlocal Stress-Driven Model

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pei-Liang Bian, Zhaowei Liu, Hai Qing, Tiantang Yu
{"title":"Isogeometric Analysis for the Arbitrary AFG Microbeam with Two-Phase Nonlocal Stress-Driven Model","authors":"Pei-Liang Bian,&nbsp;Zhaowei Liu,&nbsp;Hai Qing,&nbsp;Tiantang Yu","doi":"10.1007/s10338-024-00467-7","DOIUrl":null,"url":null,"abstract":"<div><p>Scale effects play critical roles in the mechanical responses of microstructures. An isogeometric analysis was developed here to investigate the mechanical responses of an axially functionally graded microbeam. The Euler–Bernoulli beam model was utilized, and size effects in the structure were modeled with a stress-driven two-phase local/nonlocal integral constitution. The governing equation of microstructures was given in an equivalent differential form with two additional constitutive boundary conditions. The framework was verified and utilized to analyze the microbeam’s static and dynamic mechanical responses. The present work showed great potential for modeling various types of functionally graded microstructures.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 2","pages":"341 - 360"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00467-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Scale effects play critical roles in the mechanical responses of microstructures. An isogeometric analysis was developed here to investigate the mechanical responses of an axially functionally graded microbeam. The Euler–Bernoulli beam model was utilized, and size effects in the structure were modeled with a stress-driven two-phase local/nonlocal integral constitution. The governing equation of microstructures was given in an equivalent differential form with two additional constitutive boundary conditions. The framework was verified and utilized to analyze the microbeam’s static and dynamic mechanical responses. The present work showed great potential for modeling various types of functionally graded microstructures.

Abstract Image

利用两相非局部应力驱动模型对任意 AFG 微梁进行等距分析
尺度效应在微结构的机械响应中起着至关重要的作用。本文采用等几何分析方法研究了轴向功能分级微梁的力学响应。研究采用了欧拉-伯努利梁模型,并通过应力驱动的两相局部/非局部积分构成来模拟结构中的尺寸效应。微结构的支配方程以等效微分形式给出,并附加了两个边界构成条件。该框架经过验证,并用于分析微梁的静态和动态机械响应。目前的工作显示了对各种类型的功能分级微结构进行建模的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信