{"title":"DA-ResNet: dual-stream ResNet with attention mechanism for classroom video summary","authors":"Yuxiang Wu, Xiaoyan Wang, Tianpan Chen, Yan Dou","doi":"10.1007/s10044-024-01256-1","DOIUrl":null,"url":null,"abstract":"<p>It is important to generate both diverse and representative video summary for massive videos. In this paper, a convolution neural network based on dual-stream attention mechanism(DA-ResNet) is designed to obtain candidate summary sequences for classroom scenes. DA-ResNet constructs a dual stream input of image frame sequence and optical flow frame sequence to enhance the expression ability. The network also embeds the attention mechanism into ResNet. On the other hand, the final video summary is obtained by removing redundant frames with the improved hash clustering algorithm. In this process, preprocessing is performed first to reduce computational complexity. And then hash clustering is used to retain the frame with the highest entropy value in each class, removing other similar frames. To verify its effectiveness in classroom scenes, we also created ClassVideo, a real dataset consisting of 45 videos from the normal teaching environment of our school. The results of the experiments show the competitiveness of the proposed method DA-ResNet outperforms the existing methods by about 8% in terms of the F-measure. Besides, the visual results also demonstrate its ability to produce classroom video summaries that are very close to the human preferences.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"20 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01256-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
It is important to generate both diverse and representative video summary for massive videos. In this paper, a convolution neural network based on dual-stream attention mechanism(DA-ResNet) is designed to obtain candidate summary sequences for classroom scenes. DA-ResNet constructs a dual stream input of image frame sequence and optical flow frame sequence to enhance the expression ability. The network also embeds the attention mechanism into ResNet. On the other hand, the final video summary is obtained by removing redundant frames with the improved hash clustering algorithm. In this process, preprocessing is performed first to reduce computational complexity. And then hash clustering is used to retain the frame with the highest entropy value in each class, removing other similar frames. To verify its effectiveness in classroom scenes, we also created ClassVideo, a real dataset consisting of 45 videos from the normal teaching environment of our school. The results of the experiments show the competitiveness of the proposed method DA-ResNet outperforms the existing methods by about 8% in terms of the F-measure. Besides, the visual results also demonstrate its ability to produce classroom video summaries that are very close to the human preferences.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.