{"title":"A probabilistic modal logic for context-aware trust based on evidence","authors":"Alessandro Aldini , Gianluca Curzi , Pierluigi Graziani , Mirko Tagliaferri","doi":"10.1016/j.ijar.2024.109167","DOIUrl":null,"url":null,"abstract":"<div><p>Trust is an extremely helpful construct when reasoning under uncertainty. Thus, being able to logically formalize the concept in a suitable language is important. However, doing so is problematic for three reasons. First, in order to keep track of the contextual nature of trust, situation trackers are required inside the language. Second, in order to produce trust estimations, agents rely on evidence personally gathered or reported by other agents; this requires elements in the language that can track which agents are used as referrals and how much weight is placed on their opinions. Finally, trust is subjective in nature, thus, personal thresholds are needed to track the trust-propensity of different evaluators. In this paper we propose an interpretation of a probabilistic modal language à la Hennessy-Milner in order to capture a context-aware quantitative notion of trust based on evidence. We also provide an axiomatization for the language and prove soundness, completeness, and decidability results.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"169 ","pages":"Article 109167"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888613X24000549/pdfft?md5=4f8df3737451f342a0bf6a2d5024f1b9&pid=1-s2.0-S0888613X24000549-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24000549","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Trust is an extremely helpful construct when reasoning under uncertainty. Thus, being able to logically formalize the concept in a suitable language is important. However, doing so is problematic for three reasons. First, in order to keep track of the contextual nature of trust, situation trackers are required inside the language. Second, in order to produce trust estimations, agents rely on evidence personally gathered or reported by other agents; this requires elements in the language that can track which agents are used as referrals and how much weight is placed on their opinions. Finally, trust is subjective in nature, thus, personal thresholds are needed to track the trust-propensity of different evaluators. In this paper we propose an interpretation of a probabilistic modal language à la Hennessy-Milner in order to capture a context-aware quantitative notion of trust based on evidence. We also provide an axiomatization for the language and prove soundness, completeness, and decidability results.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.