Optimization of Virus-induced Phytoene Desaturase (PDS) gene silencing using Tobacco Rattle Virus in Coleus forskohlii

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Archana Bhat, Sahaurti Sharma, Sumit G. Gandhi
{"title":"Optimization of Virus-induced Phytoene Desaturase (PDS) gene silencing using Tobacco Rattle Virus in Coleus forskohlii","authors":"Archana Bhat, Sahaurti Sharma, Sumit G. Gandhi","doi":"10.1007/s11240-024-02697-6","DOIUrl":null,"url":null,"abstract":"<p>Virus-induced gene silencing (VIGS) is an effective reverse genetics method used to study the gene function by analysis of plants at phenotype and molecular levels. Here, the standardization of the protocol for VIGS through <i>Agrobacterium</i>-mediated transformation was successfully achieved. Stem cuttings with roots were established in <i>Coleus forskohlii</i>. Phytoene desaturase gene from <i>Coleus forskohlii</i> (<i>CfPDS</i>) was isolated and cloned in TRV2 vector to construct <i>CfPDS:TRV2</i>. <i>CfPDS:TRV2</i> construct was transformed in <i>Agrobacterium tumefaciens</i>. Agro-infiltration was carried out using leaf infiltration, agrodrench and submerged methods. Submerged method gave prominent results as compared to others. The expression of <i>CfPDS</i> gene was significantly decreased in plants agro-infiltrated with <i>CfPDS:TRV2</i> construct resulting in photobleached areas of the affected parts of leaves. <i>CfPDS:TRV2</i> treated plants showed lower chlorophyll a concentration and production of reactive oxygen species (ROS) as compared to TRV1 + 2 treated control plants. This study resulted in the establishment of VIGS protocol for <i>Coleus forskohlii</i> that can be further used to engineer the genes involved in the secondary metabolite pathway.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02697-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Virus-induced gene silencing (VIGS) is an effective reverse genetics method used to study the gene function by analysis of plants at phenotype and molecular levels. Here, the standardization of the protocol for VIGS through Agrobacterium-mediated transformation was successfully achieved. Stem cuttings with roots were established in Coleus forskohlii. Phytoene desaturase gene from Coleus forskohlii (CfPDS) was isolated and cloned in TRV2 vector to construct CfPDS:TRV2. CfPDS:TRV2 construct was transformed in Agrobacterium tumefaciens. Agro-infiltration was carried out using leaf infiltration, agrodrench and submerged methods. Submerged method gave prominent results as compared to others. The expression of CfPDS gene was significantly decreased in plants agro-infiltrated with CfPDS:TRV2 construct resulting in photobleached areas of the affected parts of leaves. CfPDS:TRV2 treated plants showed lower chlorophyll a concentration and production of reactive oxygen species (ROS) as compared to TRV1 + 2 treated control plants. This study resulted in the establishment of VIGS protocol for Coleus forskohlii that can be further used to engineer the genes involved in the secondary metabolite pathway.

Abstract Image

利用烟草鼠疫病毒优化病毒诱导的鹅掌楸植物油脂脱饱和酶(PDS)基因沉默
病毒诱导基因沉默(VIGS)是一种有效的反向遗传学方法,可通过对植物进行表型和分子水平的分析来研究基因功能。本研究成功实现了农杆菌介导转化 VIGS 的标准化方案。茎插条生根在鹅掌楸中建立起来。从鹅掌楸中分离出植物油脂脱饱和酶基因(CfPDS),并将其克隆到 TRV2 载体中,构建出 CfPDS:TRV2。CfPDS:TRV2构建体被转化到农杆菌中。采用叶片浸润法、农田灌溉法和浸没法进行农田浸润。与其他方法相比,浸没法的结果更为显著。用 CfPDS:TRV2 构建物进行农渗的植株中,CfPDS 基因的表达量明显下降,导致叶片受影响部分出现光漂白区域。与 TRV1 + 2 处理的对照植株相比,CfPDS:TRV2 处理的植株叶绿素 a 浓度和活性氧(ROS)产生量较低。这项研究建立了鹅掌楸的 VIGS 方案,可进一步用于参与次生代谢物途径的基因工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信