Bio-functional hydroxyapatite coated 3D porous polyetherketoneketone scaffold for enhanced osteogenesis and osteointegration in orthopedic applications
{"title":"Bio-functional hydroxyapatite coated 3D porous polyetherketoneketone scaffold for enhanced osteogenesis and osteointegration in orthopedic applications","authors":"Huanhuan Liu, Taiqing Liu, Zhicheng Yin, Xiaoyin Liu, Ying Tan, Yuwei Zhao, Haiyang Yu","doi":"10.1093/rb/rbae023","DOIUrl":null,"url":null,"abstract":"Polyetherketoneketone (PEKK), a high-performance thermoplastic special engineering material, maintains bone-like mechanical properties and has received considerable attention in the biomedical field. The three-dimensional (3D) printing technique enables the production of porous scaffolds with a honeycomb structure featuring precisely controlled pore size, porosity, and interconnectivity, which holds significant potential for applications in tissue engineering. The ideal pore architecture of porous PEKK scaffolds has yet to be elucidated. Porous PEKK scaffolds with five pore sizes P200 (225 ± 9.8 μm), P400 (411 ± 22.1 μm), P600 (596 ± 23.4 μm), P800 (786 ± 24.2 μm), and P1000 (993 ± 26.0 μm) were produced by a 3D printer. Subsequently, the optimum pore size, the P600, for mechanical properties and osteogenesis was selected based on in vitro experiments. To improve the interfacial bioactivity of porous PEKK scaffolds, hydroxyapatite (HAp) crystals were generated via in situ biomimetic mineralization induced by the phase transited lysozyme (PTL) coating. Herein, a micro/nanostructured surface showing HAp crystals on PEKK scaffold was developed. In vitro and in vivo experiments confirmed that the porous PEKK-HAp scaffolds exhibited highly interconnected pores and functional surface structures that were favorable for biocompatibility and osteoinductivity, which boosted bone regeneration. Therefore, this work not only demonstrates that the pore structure of the P600 scaffold is suitable for PEKK orthopedic implants but also sheds light on a synergistic approach involving 3D printing and biomimetic mineralization, which has the potential to yield customized 3D PEKK-HAp scaffolds with enhanced osteoinductivity and osteogenesis, offering a promising strategy for bone tissue engineering.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Polyetherketoneketone (PEKK), a high-performance thermoplastic special engineering material, maintains bone-like mechanical properties and has received considerable attention in the biomedical field. The three-dimensional (3D) printing technique enables the production of porous scaffolds with a honeycomb structure featuring precisely controlled pore size, porosity, and interconnectivity, which holds significant potential for applications in tissue engineering. The ideal pore architecture of porous PEKK scaffolds has yet to be elucidated. Porous PEKK scaffolds with five pore sizes P200 (225 ± 9.8 μm), P400 (411 ± 22.1 μm), P600 (596 ± 23.4 μm), P800 (786 ± 24.2 μm), and P1000 (993 ± 26.0 μm) were produced by a 3D printer. Subsequently, the optimum pore size, the P600, for mechanical properties and osteogenesis was selected based on in vitro experiments. To improve the interfacial bioactivity of porous PEKK scaffolds, hydroxyapatite (HAp) crystals were generated via in situ biomimetic mineralization induced by the phase transited lysozyme (PTL) coating. Herein, a micro/nanostructured surface showing HAp crystals on PEKK scaffold was developed. In vitro and in vivo experiments confirmed that the porous PEKK-HAp scaffolds exhibited highly interconnected pores and functional surface structures that were favorable for biocompatibility and osteoinductivity, which boosted bone regeneration. Therefore, this work not only demonstrates that the pore structure of the P600 scaffold is suitable for PEKK orthopedic implants but also sheds light on a synergistic approach involving 3D printing and biomimetic mineralization, which has the potential to yield customized 3D PEKK-HAp scaffolds with enhanced osteoinductivity and osteogenesis, offering a promising strategy for bone tissue engineering.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.