{"title":"Multiple-source distribution deep adaptive feature norm network for EEG emotion recognition","authors":"Lei Zhu, Fei Yu, Wangpan Ding, Aiai Huang, Nanjiao Ying, Jianhai Zhang","doi":"10.1007/s11571-024-10092-2","DOIUrl":null,"url":null,"abstract":"<p>Electroencephalogram (EEG) emotion recognition plays an important role in human–computer interaction, and a higher recognition accuracy can improve the user experience. In recent years, domain adaptive methods in transfer learning have been used to construct a general emotion recognition model to deal with domain difference among different subjects and sessions. However, it is still challenging to effectively reduce domain difference in domain adaptation. In this paper, we propose a Multiple-Source Distribution Deep Adaptive Feature Norm Network for EEG emotion recognition, which reduce domain difference by improving the transferability of task-specific features. In detail, the domain adaptive method of our model employs a three-layer network topology, inserts Adaptive Feature Norm to self-supervised adjustment between different layers, and combines a multiple-kernel selection approach to mean embedding matching. The method proposed in this paper achieves the best classification performance in the SEED and SEED-IV datasets. In SEED dataset, the average accuracy of cross-subject and cross-session experiments is 85.01 and 91.93%, respectively. In SEED-IV dataset, the average accuracy is 58.81% in cross-subject experiments and 59.51% in cross-session experiments. The experimental results demonstrate that our method can effectively reduce the domain difference and improve the emotion recognition accuracy.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10092-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalogram (EEG) emotion recognition plays an important role in human–computer interaction, and a higher recognition accuracy can improve the user experience. In recent years, domain adaptive methods in transfer learning have been used to construct a general emotion recognition model to deal with domain difference among different subjects and sessions. However, it is still challenging to effectively reduce domain difference in domain adaptation. In this paper, we propose a Multiple-Source Distribution Deep Adaptive Feature Norm Network for EEG emotion recognition, which reduce domain difference by improving the transferability of task-specific features. In detail, the domain adaptive method of our model employs a three-layer network topology, inserts Adaptive Feature Norm to self-supervised adjustment between different layers, and combines a multiple-kernel selection approach to mean embedding matching. The method proposed in this paper achieves the best classification performance in the SEED and SEED-IV datasets. In SEED dataset, the average accuracy of cross-subject and cross-session experiments is 85.01 and 91.93%, respectively. In SEED-IV dataset, the average accuracy is 58.81% in cross-subject experiments and 59.51% in cross-session experiments. The experimental results demonstrate that our method can effectively reduce the domain difference and improve the emotion recognition accuracy.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.