{"title":"Control Barrier Functions With Circulation Inequalities","authors":"Vinicius Mariano Gonçalves;Prashanth Krishnamurthy;Anthony Tzes;Farshad Khorrami","doi":"10.1109/TCST.2024.3372802","DOIUrl":null,"url":null,"abstract":"Control barrier functions (CBFs) when paired with quadratic programming (QP) offer an increasingly popular framework for control considering critical safety constraints. However, being closely related to artificial potential fields, they suffer from the classical stable spurious equilibrium point problem, in which the controller can fail to drive the system to the goal. The main contribution of this article is showing that this problem can be mitigated by introducing a circulation inequality as a constraint, which forces the system to explicitly circulate obstacles under some conditions. This circulation is introduced in the configuration space and is simple to implement once we have the CBF-constraint, adding a negligible complexity to the resulting optimization problem. Theoretical guarantees are provided for this framework, indicating, under appropriate conditions, the feasibility of the resulting optimization problem, continuity of the control input, characterization of the equilibrium points, a weak form of Lyapunov stability, and uniqueness of the equilibrium points. The provided experimental studies showcase the overall properties and applicability in different scenarios.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 4","pages":"1426-1441"},"PeriodicalIF":4.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10472718/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Control barrier functions (CBFs) when paired with quadratic programming (QP) offer an increasingly popular framework for control considering critical safety constraints. However, being closely related to artificial potential fields, they suffer from the classical stable spurious equilibrium point problem, in which the controller can fail to drive the system to the goal. The main contribution of this article is showing that this problem can be mitigated by introducing a circulation inequality as a constraint, which forces the system to explicitly circulate obstacles under some conditions. This circulation is introduced in the configuration space and is simple to implement once we have the CBF-constraint, adding a negligible complexity to the resulting optimization problem. Theoretical guarantees are provided for this framework, indicating, under appropriate conditions, the feasibility of the resulting optimization problem, continuity of the control input, characterization of the equilibrium points, a weak form of Lyapunov stability, and uniqueness of the equilibrium points. The provided experimental studies showcase the overall properties and applicability in different scenarios.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.