Functionalized lipid nanoparticles modulate the blood-brain barrier and eliminate α-synuclein to repair dopamine neurons

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Xiaomei Wu , Renxiang Yuan , Yichong Xu , Kai Wang , Hong Yuan , Tingting Meng , Fuqiang Hu
{"title":"Functionalized lipid nanoparticles modulate the blood-brain barrier and eliminate α-synuclein to repair dopamine neurons","authors":"Xiaomei Wu ,&nbsp;Renxiang Yuan ,&nbsp;Yichong Xu ,&nbsp;Kai Wang ,&nbsp;Hong Yuan ,&nbsp;Tingting Meng ,&nbsp;Fuqiang Hu","doi":"10.1016/j.ajps.2024.100904","DOIUrl":null,"url":null,"abstract":"<div><p>The challenge in the clinical treatment of Parkinson's disease lies in the lack of disease-modifying therapies that can halt or slow down the progression. Peptide drugs, such as exenatide (Exe), with potential disease-modifying efficacy, have difficulty in crossing the blood-brain barrier (BBB) due to their large molecular weight. Herein, we fabricate multi-functionalized lipid nanoparticles (LNP) Lpc-BoSA/CSO with BBB targeting, permeability-increasing and responsive release functions. Borneol is chemically bonded with stearic acid and, as one of the components of Lpc-BoSA/CSO, is used to increase BBB permeability. Immunofluorescence results of brain tissue of 15-month-old C57BL/6 mice show that Lpc-BoSA/CSO disperses across the BBB into brain parenchyma, and the amount is 4.21 times greater than that of conventional LNP. Motor symptoms of mice in Lpc-BoSA/CSO-Exe group are significantly improved, and the content of dopamine is 1.85 times (substantia nigra compacta) and 1.49 times (striatum) that of PD mice. α-Synuclein expression and Lewy bodies deposition are reduced to 51.85% and 44.72% of PD mice, respectively. Immunohistochemical mechanism studies show AKT expression in Lpc-BoSA/CSO-Exe is 4.23 times that of PD mice and GSK-3β expression is reduced to 18.41%. Lpc-BoSA/CSO-Exe could reduce the production of α-synuclein and Lewy bodies through AKT/GSK-3β pathway, and effectively prevent the progressive deterioration of Parkinson's disease. In summary, Lpc-BoSA/CSO-Exe increases the entry of exenatide into brain and promotes its clinical application for Parkinson's disease therapy.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 2","pages":"Article 100904"},"PeriodicalIF":10.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1818087624000217/pdfft?md5=56dd1adb8e0df656c66b5e9ef3df6cef&pid=1-s2.0-S1818087624000217-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087624000217","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge in the clinical treatment of Parkinson's disease lies in the lack of disease-modifying therapies that can halt or slow down the progression. Peptide drugs, such as exenatide (Exe), with potential disease-modifying efficacy, have difficulty in crossing the blood-brain barrier (BBB) due to their large molecular weight. Herein, we fabricate multi-functionalized lipid nanoparticles (LNP) Lpc-BoSA/CSO with BBB targeting, permeability-increasing and responsive release functions. Borneol is chemically bonded with stearic acid and, as one of the components of Lpc-BoSA/CSO, is used to increase BBB permeability. Immunofluorescence results of brain tissue of 15-month-old C57BL/6 mice show that Lpc-BoSA/CSO disperses across the BBB into brain parenchyma, and the amount is 4.21 times greater than that of conventional LNP. Motor symptoms of mice in Lpc-BoSA/CSO-Exe group are significantly improved, and the content of dopamine is 1.85 times (substantia nigra compacta) and 1.49 times (striatum) that of PD mice. α-Synuclein expression and Lewy bodies deposition are reduced to 51.85% and 44.72% of PD mice, respectively. Immunohistochemical mechanism studies show AKT expression in Lpc-BoSA/CSO-Exe is 4.23 times that of PD mice and GSK-3β expression is reduced to 18.41%. Lpc-BoSA/CSO-Exe could reduce the production of α-synuclein and Lewy bodies through AKT/GSK-3β pathway, and effectively prevent the progressive deterioration of Parkinson's disease. In summary, Lpc-BoSA/CSO-Exe increases the entry of exenatide into brain and promotes its clinical application for Parkinson's disease therapy.

Abstract Image

功能化脂质纳米粒子调节血脑屏障并消除α-突触核蛋白,从而修复多巴胺神经元
帕金森病临床治疗的挑战在于缺乏能够阻止或减缓病情发展的疾病改变疗法。肽类药物,如艾塞那肽(Exe),具有潜在的疾病改变疗效,但由于其分子量较大,很难通过血脑屏障(BBB)。在此,我们制备了多功能脂质纳米颗粒(LNP)Lpc-BoSA/CSO,具有BBB靶向、增透和响应释放功能。龙脑与硬脂酸化学键合,作为 Lpc-BoSA/CSO 的成分之一,用于增加 BBB 的通透性。对 15 个月大的 C57BL/6 小鼠脑组织的免疫荧光结果显示,Lpc-BoSA/CSO 可穿过 BBB 扩散到脑实质中,其数量是传统 LNP 的 4.21 倍。Lpc-BoSA/CSO-Exe组小鼠的运动症状明显改善,多巴胺含量分别是帕金森病小鼠的1.85倍(黑质)和1.49倍(纹状体),α-突触核蛋白表达和路易体沉积分别减少到帕金森病小鼠的51.85%和44.72%。免疫组化机制研究显示,Lpc-BoSA/CSO-Exe 中 AKT 的表达是帕金森病小鼠的 4.23 倍,GSK-3β 的表达降低至 18.41%。Lpc-BoSA/CSO-Exe可通过AKT/GSK-3β途径减少α-突触核蛋白和路易体的产生,有效防止帕金森病的进行性恶化。总之,Lpc-BoSA/CSO-Exe能增加艾塞那肽进入大脑的机会,促进其在帕金森病治疗中的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信