Monique Mercado-Vicentillo , Pierre-Alexandre Château , Yang-Chi Chang , Nien-Tsu Alfred Hu
{"title":"Integrating connectivity in marine protected area design: A case study between the Philippines and Taiwan","authors":"Monique Mercado-Vicentillo , Pierre-Alexandre Château , Yang-Chi Chang , Nien-Tsu Alfred Hu","doi":"10.1016/j.pecon.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>As threats to the marine environment are increasing over time, the United Nations aims to protect 30% of the ocean by 2030 as one of its sustainable development goals. In order to maximize the ecological benefit for the ocean, a coordinated global effort in marine protected area (MPA) planning is necessary. In this context, ecological connectivity between areas should be considered. Connectivity has been integrated in several previous MPA designs however this usually requires exhaustive larval information (which may not be readily available) and/or complex ocean current simulations (which may be arduous at the transnational scale). In this study, we developed a simple passive drift model of larval dispersal as an alternative approach to integrate connectivity in MPA design. By doing so, we determined larvae source and sink areas between the Philippines and Taiwan, and recorded the time it takes for the virtual larvae from the Philippines to reach the sink zones in Taiwan. We used integer linear programming to identify areas best suited for protection in the Philippines, and found that Batanes, Philippines seeds Green Island and Orchid Island in Taiwan. Travel time of the virtual larvae was estimated to range between 7 and 12 days. We also demonstrate that the integrated approach to maximize habitat area and minimize larvae travel time yields promising results for marine conservation. This approach could be instrumental in marine conservation planning, especially in the formulation of a transboundary MPA network.</p></div>","PeriodicalId":56034,"journal":{"name":"Perspectives in Ecology and Conservation","volume":"22 2","pages":"Pages 146-155"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2530064424000051/pdfft?md5=a6d0c813e29f419d7cdaf9252f8c28fb&pid=1-s2.0-S2530064424000051-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2530064424000051","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
As threats to the marine environment are increasing over time, the United Nations aims to protect 30% of the ocean by 2030 as one of its sustainable development goals. In order to maximize the ecological benefit for the ocean, a coordinated global effort in marine protected area (MPA) planning is necessary. In this context, ecological connectivity between areas should be considered. Connectivity has been integrated in several previous MPA designs however this usually requires exhaustive larval information (which may not be readily available) and/or complex ocean current simulations (which may be arduous at the transnational scale). In this study, we developed a simple passive drift model of larval dispersal as an alternative approach to integrate connectivity in MPA design. By doing so, we determined larvae source and sink areas between the Philippines and Taiwan, and recorded the time it takes for the virtual larvae from the Philippines to reach the sink zones in Taiwan. We used integer linear programming to identify areas best suited for protection in the Philippines, and found that Batanes, Philippines seeds Green Island and Orchid Island in Taiwan. Travel time of the virtual larvae was estimated to range between 7 and 12 days. We also demonstrate that the integrated approach to maximize habitat area and minimize larvae travel time yields promising results for marine conservation. This approach could be instrumental in marine conservation planning, especially in the formulation of a transboundary MPA network.
期刊介绍:
Perspectives in Ecology and Conservation (PECON) is a scientific journal devoted to improving theoretical and conceptual aspects of conservation science. It has the main purpose of communicating new research and advances to different actors of society, including researchers, conservationists, practitioners, and policymakers. Perspectives in Ecology and Conservation publishes original papers on biodiversity conservation and restoration, on the main drivers affecting native ecosystems, and on nature’s benefits to people and human wellbeing. This scope includes studies on biodiversity patterns, the effects of habitat loss, fragmentation, biological invasion and climate change on biodiversity, conservation genetics, spatial conservation planning, ecosystem management, ecosystem services, sustainability and resilience of socio-ecological systems, conservation policy, among others.