L2 to Lp bounds for spectral projectors on the Euclidean two-dimensional torus

Pub Date : 2024-03-15 DOI:10.1017/s0013091524000099
Ciprian Demeter, Pierre Germain
{"title":"L2 to Lp bounds for spectral projectors on the Euclidean two-dimensional torus","authors":"Ciprian Demeter, Pierre Germain","doi":"10.1017/s0013091524000099","DOIUrl":null,"url":null,"abstract":"We consider spectral projectors associated to the Euclidean Laplacian on the two-dimensional torus, in the case where the spectral window is narrow. Bounds for their <jats:italic>L</jats:italic><jats:sup>2</jats:sup> to <jats:italic>L<jats:sup>p</jats:sup></jats:italic> operator norm are derived, extending the classical result of Sogge; a new question on the convolution kernel of the projector is introduced. The methods employed include <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000099_inline1.png\" /> <jats:tex-math>$\\ell^2$</jats:tex-math> </jats:alternatives> </jats:inline-formula> decoupling, small cap decoupling and estimates of exponential sums.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider spectral projectors associated to the Euclidean Laplacian on the two-dimensional torus, in the case where the spectral window is narrow. Bounds for their L2 to Lp operator norm are derived, extending the classical result of Sogge; a new question on the convolution kernel of the projector is introduced. The methods employed include $\ell^2$ decoupling, small cap decoupling and estimates of exponential sums.
分享
查看原文
欧氏二维环上谱投影的 L2 到 Lp 边界
我们考虑了与二维环上欧氏拉普拉奇相关的谱投影,即谱窗很窄的情况。我们推导了其 L2 到 Lp 算子规范的边界,扩展了索格的经典结果;引入了关于投影器卷积核的新问题。所采用的方法包括 $\ell^2$ 去耦、小上限去耦和指数和的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信