QSPR models for n-octanol/water partition coefficient and enthalpy of vaporization using CDFT and information theory-based descriptors

IF 1.7 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Arpita Poddar, Akshay Chordia, Pratim Kumar Chattaraj
{"title":"QSPR models for n-octanol/water partition coefficient and enthalpy of vaporization using CDFT and information theory-based descriptors","authors":"Arpita Poddar,&nbsp;Akshay Chordia,&nbsp;Pratim Kumar Chattaraj","doi":"10.1007/s12039-024-02250-0","DOIUrl":null,"url":null,"abstract":"<div><p>The quantitative structure-property relationship (QSPR) technique is used to gauge the n-octanol/water partition coefficient (log <i>K</i><sub>OW</sub>) and enthalpy of vaporization (<i>∆</i><sub>vap</sub><i>H</i><sub>m</sub>) of 133 Polychlorinated Biphenyls (PCBs) using conceptual density functional theory (CDFT)-based global reactivity and information-theory (IT) based parameters. Regression models are established using linear and multi-linear relationships to correlate the observed physicochemical properties of PCBs with the predicted ones. The study explored the significance of CDFT and IT descriptors, and based on the calculation of Pearson correlation coefficient values, the selection of suitable descriptors is made for successful QSPR models of selected PCBs. It is found that some of the CDFT parameters are highly correlated with the IT parameters, as suggested by their high Pearson correlation coefficient values for PCB systems. The regression model generated using the descriptors <i>I</i><sub><i>G</i></sub>, <i>g</i><sub>1</sub>, <i>g</i><sub>2</sub>, <i>EA</i>, <i>η</i> for predicting log <i>K</i><sub>OW</sub> and <i>I</i><sub><i>F</i></sub><i>, g</i><sub>3</sub>, <i>η</i>, <i>S</i><sub><i>S</i></sub>, <i>S</i><sub><i>GBP</i></sub> for predicting <i>∆</i><sub>vap</sub><i>H</i><sub>m</sub> gives <i>R</i><sup>2</sup> value of 0.9342 and 0.8662, respectively, for the selected 133 PCB congeners. Furthermore, to verify the descriptor selection, a machine learning approach is also used to develop QSPR models in this study.</p><h3>Graphical Abstract</h3><p>QSPR modelling using CDFT and information theory-based descriptors for predicting n-octanol/water partition coefficient and enthalpy of vaporization for the selected PCBs\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02250-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The quantitative structure-property relationship (QSPR) technique is used to gauge the n-octanol/water partition coefficient (log KOW) and enthalpy of vaporization (vapHm) of 133 Polychlorinated Biphenyls (PCBs) using conceptual density functional theory (CDFT)-based global reactivity and information-theory (IT) based parameters. Regression models are established using linear and multi-linear relationships to correlate the observed physicochemical properties of PCBs with the predicted ones. The study explored the significance of CDFT and IT descriptors, and based on the calculation of Pearson correlation coefficient values, the selection of suitable descriptors is made for successful QSPR models of selected PCBs. It is found that some of the CDFT parameters are highly correlated with the IT parameters, as suggested by their high Pearson correlation coefficient values for PCB systems. The regression model generated using the descriptors IG, g1, g2, EA, η for predicting log KOW and IF, g3, η, SS, SGBP for predicting vapHm gives R2 value of 0.9342 and 0.8662, respectively, for the selected 133 PCB congeners. Furthermore, to verify the descriptor selection, a machine learning approach is also used to develop QSPR models in this study.

Graphical Abstract

QSPR modelling using CDFT and information theory-based descriptors for predicting n-octanol/water partition coefficient and enthalpy of vaporization for the selected PCBs

Abstract Image

Abstract Image

利用基于 CDFT 和信息论的描述符建立正辛醇/水分配系数和汽化焓的 QSPR 模型
利用基于概念密度泛函理论(CDFT)的全局反应性参数和基于信息理论(IT)的参数,采用定量结构-性质关系(QSPR)技术测定了 133 种多氯联苯(PCBs)的正辛醇/水分配系数(log KOW)和汽化焓(∆vapHm)。利用线性和多线性关系建立回归模型,将观察到的多氯联苯理化性质与预测的性质联系起来。研究探讨了 CDFT 和 IT 描述符的重要性,并根据皮尔逊相关系数值的计算,为选定多氯联苯的成功 QSPR 模型选择了合适的描述符。研究发现,一些 CDFT 参数与 IT 参数高度相关,这一点可以从 PCB 系统的高 Pearson 相关系数值看出。使用描述符 IG、g1、g2、EA、η 预测对数 KOW,使用描述符 IF、g3、η、SS、SGBP 预测 ∆vapHm 生成的回归模型对选定的 133 种 PCB 同系物的 R2 值分别为 0.9342 和 0.8662。此外,为了验证描述符的选择,本研究还使用了机器学习方法来开发 QSPR 模型。 图文摘要使用基于 CDFT 和信息论的描述符建立 QSPR 模型,预测所选多氯联苯的正辛醇/水分配系数和蒸发焓
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Sciences
Journal of Chemical Sciences CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
5.90%
发文量
107
审稿时长
1 months
期刊介绍: Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信