Pan Li, Jiang Zhong, Yanqing Fu, Zhentao Du, Lan Jiang, Yi Han, Jan Luxa, Bing Wu, Zdenek Sofer, Qiliang Wei, Weiyou Yang
{"title":"High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation","authors":"Pan Li, Jiang Zhong, Yanqing Fu, Zhentao Du, Lan Jiang, Yi Han, Jan Luxa, Bing Wu, Zdenek Sofer, Qiliang Wei, Weiyou Yang","doi":"10.1002/eem2.12716","DOIUrl":null,"url":null,"abstract":"<p>Anion exchange membrane fuel cell (AEMFC) technology is attracting intensive attention, due to its great potential by using non-precious-metal catalysts (NPMCs) in the cathode and cheap bipolar plate materials in alkaline media. However, in such case, the kinetics of hydrogen oxidation reaction (HOR) in the anode is two orders of magnitude sluggish than that of acidic electrolytes, which is recognized as the grand challenge in this field. Herein, we report the rationally designed Ni nanoparticles encapsulated by N-doped graphene layers (Ni@NG) using a facile pyrolysis strategy. Based on the density functional theory calculations and electrochemical performance analysis, it is witnessed that the rich Pyridinic-N within the graphene shell optimizes the binding energy of the intermediates, thus enabling the fundamentally enhanced activity for HOR with robust stability. As a proof of concept, the resultant Ni@NG sample as the anode with a low loading (1.8 mg cm<sup>−2</sup>) in AEMFCs delivers a high peak power density of 500 mW cm<sup>−2</sup>, outperforming all of those of NPMC-based analogs ever reported.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12716","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12716","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anion exchange membrane fuel cell (AEMFC) technology is attracting intensive attention, due to its great potential by using non-precious-metal catalysts (NPMCs) in the cathode and cheap bipolar plate materials in alkaline media. However, in such case, the kinetics of hydrogen oxidation reaction (HOR) in the anode is two orders of magnitude sluggish than that of acidic electrolytes, which is recognized as the grand challenge in this field. Herein, we report the rationally designed Ni nanoparticles encapsulated by N-doped graphene layers (Ni@NG) using a facile pyrolysis strategy. Based on the density functional theory calculations and electrochemical performance analysis, it is witnessed that the rich Pyridinic-N within the graphene shell optimizes the binding energy of the intermediates, thus enabling the fundamentally enhanced activity for HOR with robust stability. As a proof of concept, the resultant Ni@NG sample as the anode with a low loading (1.8 mg cm−2) in AEMFCs delivers a high peak power density of 500 mW cm−2, outperforming all of those of NPMC-based analogs ever reported.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.