Rigorous derivation of weakly dispersive shallow-water models with large amplitude topography variations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Louis Emerald, Martin Oen Paulsen
{"title":"Rigorous derivation of weakly dispersive shallow-water models with large amplitude topography variations","authors":"Louis Emerald,&nbsp;Martin Oen Paulsen","doi":"10.1111/sapm.12686","DOIUrl":null,"url":null,"abstract":"<p>We derive rigorously from the water waves equations new irrotational shallow-water models for the propagation of surface waves in the case of uneven topography in horizontal dimensions one and two. The systems are made to capture the possible change in the waves' propagation, which can occur in the case of large amplitude topography. The main contribution of this work is the construction of new multiscale shallow-water approximations of the Dirichlet–Neumann operator. We prove that the precision of these approximations is given at the order <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mi>μ</mi>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$O(\\mu {\\varepsilon })$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mi>μ</mi>\n <mi>ε</mi>\n <mo>+</mo>\n <msup>\n <mi>μ</mi>\n <mn>2</mn>\n </msup>\n <msup>\n <mi>β</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(\\mu \\varepsilon +\\mu ^2\\beta ^2)$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mi>μ</mi>\n <mn>2</mn>\n </msup>\n <mi>ε</mi>\n <mo>+</mo>\n <mi>μ</mi>\n <mi>ε</mi>\n <mi>β</mi>\n <mo>+</mo>\n <msup>\n <mi>μ</mi>\n <mn>2</mn>\n </msup>\n <msup>\n <mi>β</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(\\mu ^2\\varepsilon +\\mu {\\varepsilon }\\beta + \\mu ^2\\beta ^2)$</annotation>\n </semantics></math>. Here, <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mi>β</mi>\n <annotation>$\\beta$</annotation>\n </semantics></math> denote, respectively, the shallow-water parameter, the nonlinear parameter, and the bathymetry parameter. From these approximations, we derive models with the same precision as the ones above. The model with precision <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mi>μ</mi>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$O(\\mu {\\varepsilon })$</annotation>\n </semantics></math> is coupled with an elliptic problem, while the other models do not present this inconvenience.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12686","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive rigorously from the water waves equations new irrotational shallow-water models for the propagation of surface waves in the case of uneven topography in horizontal dimensions one and two. The systems are made to capture the possible change in the waves' propagation, which can occur in the case of large amplitude topography. The main contribution of this work is the construction of new multiscale shallow-water approximations of the Dirichlet–Neumann operator. We prove that the precision of these approximations is given at the order O ( μ ε ) $O(\mu {\varepsilon })$ , O ( μ ε + μ 2 β 2 ) $O(\mu \varepsilon +\mu ^2\beta ^2)$ , and O ( μ 2 ε + μ ε β + μ 2 β 2 ) $O(\mu ^2\varepsilon +\mu {\varepsilon }\beta + \mu ^2\beta ^2)$ . Here, μ $\mu$ , ε $\varepsilon$ , and β $\beta$ denote, respectively, the shallow-water parameter, the nonlinear parameter, and the bathymetry parameter. From these approximations, we derive models with the same precision as the ones above. The model with precision O ( μ ε ) $O(\mu {\varepsilon })$ is coupled with an elliptic problem, while the other models do not present this inconvenience.

严格推导具有大振幅地形变化的弱弥散浅水模型
我们从水波方程中严格推导出新的非旋转浅水模型,用于在水平一维和二维地形不平的情况下表面波的传播。这些系统能够捕捉到大振幅地形情况下波浪传播可能发生的变化。这项工作的主要贡献在于构建了新的多尺度浅水近似 Dirichlet-Neumann 算子。我们证明这些近似的精度为 O(με)$O(\mu {\varepsilon })$、O(με+μ2β2)$O(\mu \varepsilon +\mu ^2\beta ^2)$,以及 O(μ2ε+μεβ+μ2β2)$O(\mu ^2\varepsilon +\mu {\varepsilon }\beta + \mu ^2\beta ^2)$。这里,μ$\mu$、ε$\varepsilon$ 和 β$\beta$ 分别表示浅水参数、非线性参数和水深参数。根据这些近似值,我们可以推导出与上述精度相同的模型。精度为 O(με)$O(\mu {\varepsilon })$ 的模型与椭圆问题耦合,而其他模型则没有这种不便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信