Spoorti S. Gandhadmath, S. Vidyashree, Rakeshkumar Choudhary, Babu N. Motagi, Ravikumar Hosamani, Pushpa Bharati, Spurthi N. Nayak
{"title":"Genetic diversity assessment of groundnut (Arachis hypogaea L.) for polyphenol content and antioxidant activity: unlocking the nutritional potential","authors":"Spoorti S. Gandhadmath, S. Vidyashree, Rakeshkumar Choudhary, Babu N. Motagi, Ravikumar Hosamani, Pushpa Bharati, Spurthi N. Nayak","doi":"10.1007/s13562-024-00882-4","DOIUrl":null,"url":null,"abstract":"<p>Groundnut is a rich source of several nutritional components including polyphenols and antioxidants that offer various health benefits. In this regard, the mini core accessions along with elite varieties of groundnut were used to assess genetic diversity using AhTE markers. The phenotypic observation on eight morphological, six productivity and two nutraceutical traits [total polyphenol content (TPC) and total antioxidant activity (AOA)] were studied. Correlation studies revealed a significant positive correlation between TPC and AOA. The degree of divergence with respect to nutraceutical content among the genotypes of mini core collection and elite cultivars is evident from the current study. The STRUCTURE analyses revealed the grouping of genotypes into three distinct clusters mainly based on the botanical types of groundnut. The analysis of molecular variance displayed maximum variation (97%) within the individuals of subpopulations and minimum variation (3%) among subpopulations. Principal component analysis exhibited 3 principal components that accounted for 42.17% of the total variation. Association mapping study indicated 20 significant marker-trait associations at 1% probability. The study has also identified significant marker-trait associations with nutraceutical properties of groundnut, AhTE0465-TPC and AhTE0381- AOA with explained phenotypic variation of 7.45% and 6.85% respectively. These markers were found to have positions at A02 and A09 with bHLH DNA-binding family protein and chitinase putative functions respectively. The markers associated with TPC and AOA can further be utilized for genomics-assisted breeding for nutritionally rich cultivars in groundnut.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00882-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Groundnut is a rich source of several nutritional components including polyphenols and antioxidants that offer various health benefits. In this regard, the mini core accessions along with elite varieties of groundnut were used to assess genetic diversity using AhTE markers. The phenotypic observation on eight morphological, six productivity and two nutraceutical traits [total polyphenol content (TPC) and total antioxidant activity (AOA)] were studied. Correlation studies revealed a significant positive correlation between TPC and AOA. The degree of divergence with respect to nutraceutical content among the genotypes of mini core collection and elite cultivars is evident from the current study. The STRUCTURE analyses revealed the grouping of genotypes into three distinct clusters mainly based on the botanical types of groundnut. The analysis of molecular variance displayed maximum variation (97%) within the individuals of subpopulations and minimum variation (3%) among subpopulations. Principal component analysis exhibited 3 principal components that accounted for 42.17% of the total variation. Association mapping study indicated 20 significant marker-trait associations at 1% probability. The study has also identified significant marker-trait associations with nutraceutical properties of groundnut, AhTE0465-TPC and AhTE0381- AOA with explained phenotypic variation of 7.45% and 6.85% respectively. These markers were found to have positions at A02 and A09 with bHLH DNA-binding family protein and chitinase putative functions respectively. The markers associated with TPC and AOA can further be utilized for genomics-assisted breeding for nutritionally rich cultivars in groundnut.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.