Multicycle Parameter Estimations in Coupled Earth System Models Based on Multiscale Sensitivity Responses in the Context of Low-Order Models

IF 4.8 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Haoyu Yang, Shaoqing Zhang, Jinzhuo Cai, Dong Wang, Xiong Deng, Yang Gao
{"title":"Multicycle Parameter Estimations in Coupled Earth System Models Based on Multiscale Sensitivity Responses in the Context of Low-Order Models","authors":"Haoyu Yang, Shaoqing Zhang, Jinzhuo Cai, Dong Wang, Xiong Deng, Yang Gao","doi":"10.1175/jcli-d-23-0615.1","DOIUrl":null,"url":null,"abstract":"Abstract Climate model simulations tend to drift away from the real world because of model errors induced by an incomplete understanding and implementation of dynamics and physics. Parameter estimation uses the data assimilation methods to optimize model parameters, which minimizes model errors by incorporating observations into the model through state-parameter covariance. However, traditional parameter estimation schemes that simultaneously estimate multiple parameters using observations could fail to reduce model errors because of the low signal-to-noise ratio in the covariance. Here, based on the saturation time scales of model sensitivity that depend on different parameters and model components, we design a new multicycle parameter estimation scheme, where each cycle is determined by the saturation time scale of sensitivity of the model state associated with observations in each climate system component. The new scheme is evaluated using two low-order models. The results show that due to high signal-to-noise ratios sustained during the parameter estimation process, the new scheme consistently reduces model errors as the number of estimated parameters increases. The new scheme may improve comprehensive coupled climate models by optimizing multiple parameters with multisource observations, thereby addressing the multiscale nature of component motions in the Earth system.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"25 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0615.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Climate model simulations tend to drift away from the real world because of model errors induced by an incomplete understanding and implementation of dynamics and physics. Parameter estimation uses the data assimilation methods to optimize model parameters, which minimizes model errors by incorporating observations into the model through state-parameter covariance. However, traditional parameter estimation schemes that simultaneously estimate multiple parameters using observations could fail to reduce model errors because of the low signal-to-noise ratio in the covariance. Here, based on the saturation time scales of model sensitivity that depend on different parameters and model components, we design a new multicycle parameter estimation scheme, where each cycle is determined by the saturation time scale of sensitivity of the model state associated with observations in each climate system component. The new scheme is evaluated using two low-order models. The results show that due to high signal-to-noise ratios sustained during the parameter estimation process, the new scheme consistently reduces model errors as the number of estimated parameters increases. The new scheme may improve comprehensive coupled climate models by optimizing multiple parameters with multisource observations, thereby addressing the multiscale nature of component motions in the Earth system.
基于低阶模型背景下的多尺度敏感性响应的耦合地球系统模型中的多周期参数估计
摘要 气候模型模拟往往偏离真实世界,这是因为对动力学和物理学的理解和实施不完整而导致模型误差。参数估计利用数据同化方法优化模式参数,通过状态参数协方差将观测数据纳入模式,从而使模式误差最小化。然而,由于协方差的信噪比较低,利用观测数据同时估计多个参数的传统参数估计方案可能无法减少模型误差。在此,我们根据取决于不同参数和模式组成部分的模式灵敏度饱和时间尺度,设计了一种新的多周期参数估计方案,其中每个周期由每个气候系统组成部分中与观测相关的模式状态灵敏度饱和时间尺度决定。我们使用两个低阶模型对新方案进行了评估。结果表明,由于在参数估计过程中持续保持高信噪比,随着估计参数数量的增加,新方案能持续减少模型误差。通过利用多源观测数据优化多个参数,新方案可以改进综合耦合气候模式,从而解决地球系统中成分运动的多尺度性质问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Climate
Journal of Climate 地学-气象与大气科学
CiteScore
9.30
自引率
14.30%
发文量
490
审稿时长
7.5 months
期刊介绍: The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信