{"title":"The molecular crosstalk of the hippo cascade in breast cancer: A potential central susceptibility","authors":"Sulfath Thottungal Parambil, Gisha Rose Antony, Ajeesh Babu Littleflower, Lakshmi Subhadradevi","doi":"10.1016/j.biochi.2024.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>The incidence of breast cancer is perpetually growing globally, and it remains a major public health problem and the leading cause of mortality in women. Though the aberrant activities of the Hippo pathway have been reported to be associated with cancer, constructive knowledge of the pathway connecting the various elements of breast cancer remains to be elucidated. The Hippo transducers, yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), are reported to be either tumor suppressors, oncogenes, or independent prognostic markers in breast cancer. Thus, there is further need for an explicative evaluation of the dilemma with this molecular contribution of Hippo transducers in modulating breast malignancy. In this review, we summarize the intricate crosstalk of the Hippo pathway in different aspects of breast malignancy, including stem-likeness, cellular signaling, metabolic adaptations, tumor microenvironment, and immune responses. The collective data shows that Hippo transducers play an indispensable role in mammary tumor formation, progression, and dissemination. However, the cellular functions of YAP/TAZ in tumorigenesis might be largely dependent on the mechanical and biophysical cues they interact with, as well as on the cell phenotype. This review provides a glimpse into the plausible biological contributions of the cascade to the inward progression of breast carcinoma and suggests potential therapeutic prospects.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030090842400066X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The incidence of breast cancer is perpetually growing globally, and it remains a major public health problem and the leading cause of mortality in women. Though the aberrant activities of the Hippo pathway have been reported to be associated with cancer, constructive knowledge of the pathway connecting the various elements of breast cancer remains to be elucidated. The Hippo transducers, yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), are reported to be either tumor suppressors, oncogenes, or independent prognostic markers in breast cancer. Thus, there is further need for an explicative evaluation of the dilemma with this molecular contribution of Hippo transducers in modulating breast malignancy. In this review, we summarize the intricate crosstalk of the Hippo pathway in different aspects of breast malignancy, including stem-likeness, cellular signaling, metabolic adaptations, tumor microenvironment, and immune responses. The collective data shows that Hippo transducers play an indispensable role in mammary tumor formation, progression, and dissemination. However, the cellular functions of YAP/TAZ in tumorigenesis might be largely dependent on the mechanical and biophysical cues they interact with, as well as on the cell phenotype. This review provides a glimpse into the plausible biological contributions of the cascade to the inward progression of breast carcinoma and suggests potential therapeutic prospects.