Mohammad A Rawashdeh, Sara Almazrouei, Maha Zaitoun, Praveen Kumar, Charbel Saade
{"title":"Empowering Radiographers: A Call for Integrated AI Training in University Curricula.","authors":"Mohammad A Rawashdeh, Sara Almazrouei, Maha Zaitoun, Praveen Kumar, Charbel Saade","doi":"10.1155/2024/7001343","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) applications are rapidly advancing in the field of medical imaging. This study is aimed at investigating the perception and knowledge of radiographers towards artificial intelligence.</p><p><strong>Methods: </strong>An online survey employing Google Forms consisting of 20 questions regarding the radiographers' perception of AI. The questionnaire was divided into two parts. The first part consisted of demographic information as well as whether the participants think AI should be part of medical training, their previous knowledge of the technologies used in AI, and whether they prefer to receive training on AI. The second part of the questionnaire consisted of two fields. The first one consisted of 16 questions regarding radiographers' perception of AI applications in radiology. Descriptive analysis and logistic regression analysis were used to evaluate the effect of gender on the items of the questionnaire.</p><p><strong>Results: </strong>Familiarity with AI was low, with only 52 out of 100 respondents (52%) reporting good familiarity with AI. Many participants considered AI useful in the medical field (74%). The findings of the study demonstrate that nearly most of the participants (98%) believed that AI should be integrated into university education, with 87% of the respondents preferring to receive training on AI, with some already having prior knowledge of AI used in technologies. The logistic regression analysis indicated a significant association between male gender and experience within the range of 23-27 years with the degree of familiarity with AI technology, exhibiting respective odds ratios of 1.89 (COR = 1.89) and 1.87 (COR = 1.87).</p><p><strong>Conclusions: </strong>This study suggests that medical practices have a favorable attitude towards AI in the radiology field. Most participants surveyed believed that AI should be part of radiography education. AI training programs for undergraduate and postgraduate radiographers may be necessary to prepare them for AI tools in radiology development.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2024 ","pages":"7001343"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942819/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/7001343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Artificial intelligence (AI) applications are rapidly advancing in the field of medical imaging. This study is aimed at investigating the perception and knowledge of radiographers towards artificial intelligence.
Methods: An online survey employing Google Forms consisting of 20 questions regarding the radiographers' perception of AI. The questionnaire was divided into two parts. The first part consisted of demographic information as well as whether the participants think AI should be part of medical training, their previous knowledge of the technologies used in AI, and whether they prefer to receive training on AI. The second part of the questionnaire consisted of two fields. The first one consisted of 16 questions regarding radiographers' perception of AI applications in radiology. Descriptive analysis and logistic regression analysis were used to evaluate the effect of gender on the items of the questionnaire.
Results: Familiarity with AI was low, with only 52 out of 100 respondents (52%) reporting good familiarity with AI. Many participants considered AI useful in the medical field (74%). The findings of the study demonstrate that nearly most of the participants (98%) believed that AI should be integrated into university education, with 87% of the respondents preferring to receive training on AI, with some already having prior knowledge of AI used in technologies. The logistic regression analysis indicated a significant association between male gender and experience within the range of 23-27 years with the degree of familiarity with AI technology, exhibiting respective odds ratios of 1.89 (COR = 1.89) and 1.87 (COR = 1.87).
Conclusions: This study suggests that medical practices have a favorable attitude towards AI in the radiology field. Most participants surveyed believed that AI should be part of radiography education. AI training programs for undergraduate and postgraduate radiographers may be necessary to prepare them for AI tools in radiology development.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics