{"title":"Dynamically stabilized recurrent neural network optimized with Artificial Gorilla Troops espoused Alzheimer's disorder detection using EEG signals.","authors":"G Sudha, N Saravanan, M Muthalakshmi, M Birunda","doi":"10.1007/s13755-024-00284-9","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease is an incurable neurological disorder that damages cognitive abilities, but early identification reduces the symptoms significantly. The absence of competent healthcare professionals has made automatic identification of Alzheimer's disease more crucial since it lessens the amount of work for staff members and improves diagnostic outcomes. The major aim of this work is \"to develop a computer diagnostic scheme that makes it possible to identify AD using the Electroencephalogram (EEG) signal\". Therefore, Dynamically Stabilized Recurrent Neural Network Optimized with Artificial Gorilla Troops espoused Alzheimer's Disorder Detection using EEG signals (DSRNN-AGTO-ADD) is proposed in this paper. Here, Dynamic Context-Sensitive Filter (DCSF) is considered to eliminate the noise, and interference from the EEG signal. Then Adaptive and Concise Empirical Wavelet Transform (ACEWT) is utilized to separate the filtered signals from the frequency bands, and to feature extraction from the EEG signals. Signal's characteristics, like logarithmic bandwidth power, standard deviation, variance, kurtosis, mean energy, mean square, norm are combined to ACEWT method to create feature vectors and enhance diagnostic performance. After that, the extracted features are fed to Dynamically Stabilized Recurrent Neural Network (DSRNN) for task classification. Weight parameter of DSRNN is enhanced using Artificial Gorilla Troops Optimization Algorithm (AGTOA). The proposed DSRNN-AGTOA-ADD algorithm is activated in MATLAB. The metrics including accuracy, specificity, sensitivity, precision, computation time, ROC are examined for AD diagnosis. The performance of the proposed DSRNN-AGTOA-ADD approach attains 12.98%, 5.98% and 23.45% high specificity; 29.98%, 23.32% and 19.76% lower computation Time and 29.29%, 8.365%, 8.551% and 7.915% higher ROC compared with the existing methods.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"25"},"PeriodicalIF":4.7000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942965/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00284-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease is an incurable neurological disorder that damages cognitive abilities, but early identification reduces the symptoms significantly. The absence of competent healthcare professionals has made automatic identification of Alzheimer's disease more crucial since it lessens the amount of work for staff members and improves diagnostic outcomes. The major aim of this work is "to develop a computer diagnostic scheme that makes it possible to identify AD using the Electroencephalogram (EEG) signal". Therefore, Dynamically Stabilized Recurrent Neural Network Optimized with Artificial Gorilla Troops espoused Alzheimer's Disorder Detection using EEG signals (DSRNN-AGTO-ADD) is proposed in this paper. Here, Dynamic Context-Sensitive Filter (DCSF) is considered to eliminate the noise, and interference from the EEG signal. Then Adaptive and Concise Empirical Wavelet Transform (ACEWT) is utilized to separate the filtered signals from the frequency bands, and to feature extraction from the EEG signals. Signal's characteristics, like logarithmic bandwidth power, standard deviation, variance, kurtosis, mean energy, mean square, norm are combined to ACEWT method to create feature vectors and enhance diagnostic performance. After that, the extracted features are fed to Dynamically Stabilized Recurrent Neural Network (DSRNN) for task classification. Weight parameter of DSRNN is enhanced using Artificial Gorilla Troops Optimization Algorithm (AGTOA). The proposed DSRNN-AGTOA-ADD algorithm is activated in MATLAB. The metrics including accuracy, specificity, sensitivity, precision, computation time, ROC are examined for AD diagnosis. The performance of the proposed DSRNN-AGTOA-ADD approach attains 12.98%, 5.98% and 23.45% high specificity; 29.98%, 23.32% and 19.76% lower computation Time and 29.29%, 8.365%, 8.551% and 7.915% higher ROC compared with the existing methods.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.