{"title":"Viral infection dynamics with immune chemokines and CTL mobility modulated by the infected cell density.","authors":"Hongying Shu, Hai-Yang Jin, Xiang-Sheng Wang, Jianhong Wu","doi":"10.1007/s00285-024-02065-0","DOIUrl":null,"url":null,"abstract":"<p><p>We study a viral infection model incorporating both cell-to-cell infection and immune chemokines. Based on experimental results in the literature, we make a standing assumption that the cytotoxic T lymphocytes (CTL) will move toward the location with more infected cells, while the diffusion rate of CTL is a decreasing function of the density of infected cells. We first establish the global existence and ultimate boundedness of the solution via a priori energy estimates. We then define the basic reproduction number of viral infection <math><msub><mi>R</mi> <mn>0</mn></msub> </math> and prove (by the uniform persistence theory, Lyapunov function technique and LaSalle invariance principle) that the infection-free steady state <math><msub><mi>E</mi> <mn>0</mn></msub> </math> is globally asymptotically stable if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo><</mo> <mn>1</mn></mrow> </math> . When <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></mrow> </math> , then <math><msub><mi>E</mi> <mn>0</mn></msub> </math> becomes unstable, and another basic reproduction number of CTL response <math><msub><mi>R</mi> <mn>1</mn></msub> </math> becomes the dynamic threshold in the sense that if <math> <mrow><msub><mi>R</mi> <mn>1</mn></msub> <mo><</mo> <mn>1</mn></mrow> </math> , then the CTL-inactivated steady state <math><msub><mi>E</mi> <mn>1</mn></msub> </math> is globally asymptotically stable; and if <math> <mrow><msub><mi>R</mi> <mn>1</mn></msub> <mo>></mo> <mn>1</mn></mrow> </math> , then the immune response is uniform persistent and, under an additional technical condition the CTL-activated steady state <math><msub><mi>E</mi> <mn>2</mn></msub> </math> is globally asymptotically stable. To establish the global stability results, we need to prove point dissipativity, obtain uniform persistence, construct suitable Lyapunov functions, and apply the LaSalle invariance principle.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02065-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a viral infection model incorporating both cell-to-cell infection and immune chemokines. Based on experimental results in the literature, we make a standing assumption that the cytotoxic T lymphocytes (CTL) will move toward the location with more infected cells, while the diffusion rate of CTL is a decreasing function of the density of infected cells. We first establish the global existence and ultimate boundedness of the solution via a priori energy estimates. We then define the basic reproduction number of viral infection and prove (by the uniform persistence theory, Lyapunov function technique and LaSalle invariance principle) that the infection-free steady state is globally asymptotically stable if . When , then becomes unstable, and another basic reproduction number of CTL response becomes the dynamic threshold in the sense that if , then the CTL-inactivated steady state is globally asymptotically stable; and if , then the immune response is uniform persistent and, under an additional technical condition the CTL-activated steady state is globally asymptotically stable. To establish the global stability results, we need to prove point dissipativity, obtain uniform persistence, construct suitable Lyapunov functions, and apply the LaSalle invariance principle.
我们研究了一个包含细胞间感染和免疫趋化因子的病毒感染模型。根据文献中的实验结果,我们提出了一个常设假设,即细胞毒性 T 淋巴细胞(CTL)会向感染细胞较多的地方移动,而 CTL 的扩散率是感染细胞密度的递减函数。我们首先通过先验能量估计建立了解的全局存在性和最终有界性。然后,我们定义了病毒感染的基本繁殖数 R 0,并通过均匀持久性理论、Lyapunov 函数技术和拉萨尔不变性原理证明,如果 R 0 1,无感染稳态 E 0 是全局渐近稳定的。当 R 0 > 1 时,E 0 变得不稳定,而 CTL 反应的另一个基本繁殖数 R 1 成为动态阈值,即如果 R 1 1,则 CTL 失活稳态 E 1 是全局渐近稳定的;如果 R 1 > 1,则免疫反应是均匀持久的,并且在附加技术条件下,CTL 激活稳态 E 2 是全局渐近稳定的。要建立全局稳定性结果,我们需要证明点消散性,获得均匀持久性,构建合适的 Lyapunov 函数,并应用拉萨尔不变性原理。