Identification of an N-terminal tag (580N) that improves the biosynthesis of fluorescent proteins in Francisella tularensis and other Gram-negative bacteria
Kristen Haggerty , Stuart Cantlay , Emily Young , Mariah K. Cashbaugh , Elio F. Delatore III , Rori Schreiber , Hayden Hess , Daniel R. Komlosi , Sarah Butler , Dalton Bolon , Theresa Evangelista , Takoda Hager , Claire Kelly , Katherine Phillips , Jada Voellinger , Robert M.Q. Shanks , Joseph Horzempa
{"title":"Identification of an N-terminal tag (580N) that improves the biosynthesis of fluorescent proteins in Francisella tularensis and other Gram-negative bacteria","authors":"Kristen Haggerty , Stuart Cantlay , Emily Young , Mariah K. Cashbaugh , Elio F. Delatore III , Rori Schreiber , Hayden Hess , Daniel R. Komlosi , Sarah Butler , Dalton Bolon , Theresa Evangelista , Takoda Hager , Claire Kelly , Katherine Phillips , Jada Voellinger , Robert M.Q. Shanks , Joseph Horzempa","doi":"10.1016/j.mcp.2024.101956","DOIUrl":null,"url":null,"abstract":"<div><p>Utilization of fluorescent proteins is widespread for the study of microbial pathogenesis and host-pathogen interactions. Here, we discovered that linkage of the 36 N-terminal amino acids of FTL_0580 (a hypothetical protein of <em>Francisella tularensis</em>) to fluorescent proteins increases the fluorescence emission of bacteria that express these recombinant fusions. This N-terminal peptide will be referred to as 580N. Western blotting revealed that the linkage of 580N to Emerald Green Fluorescent Protein (EmGFP) in <em>F. tularensis</em> markedly improved detection of this protein. We therefore hypothesized that transcripts containing <em>580N</em> may be translated more efficiently than those lacking the coding sequence for this leader peptide. In support, expression of <em>emGFP</em><sub><em>Ft</em></sub> that had been codon-optimized for <em>F. tularensis</em>, yielded significantly enhanced fluorescence than its non-optimized counterpart. Furthermore, fusing <em>emGFP</em> with coding sequence for a small N-terminal peptide (Serine-Lysine-Isoleucine-Lysine), which had previously been shown to inhibit ribosomal stalling, produced robust fluorescence when expressed in <em>F. tularensis.</em> These findings support the interpretation that 580N enhances the translation efficiency of fluorescent proteins in <em>F. tularensis.</em> Interestingly, expression of non-optimized <em>580N-emGFP</em> produced greater fluorescence intensity than any other construct. Structural predictions suggested that RNA secondary structure also may be influencing translation efficiency. When expressed in <em>Escherichia coli</em> and <em>Klebsiella pneumoniae</em> bacteria, <em>580N-emGFP</em> produced increased green fluorescence compared to untagged <em>emGFP</em> (neither allele was codon optimized for these bacteria). In conclusion, fusing the coding sequence for the 580N leader peptide to recombinant genes might serve as an economical alternative to codon optimization for enhancing protein expression in bacteria.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"74 ","pages":"Article 101956"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000082/pdfft?md5=4588c603f6eacdd9e1adcd4e09ecd30c&pid=1-s2.0-S0890850824000082-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850824000082","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Utilization of fluorescent proteins is widespread for the study of microbial pathogenesis and host-pathogen interactions. Here, we discovered that linkage of the 36 N-terminal amino acids of FTL_0580 (a hypothetical protein of Francisella tularensis) to fluorescent proteins increases the fluorescence emission of bacteria that express these recombinant fusions. This N-terminal peptide will be referred to as 580N. Western blotting revealed that the linkage of 580N to Emerald Green Fluorescent Protein (EmGFP) in F. tularensis markedly improved detection of this protein. We therefore hypothesized that transcripts containing 580N may be translated more efficiently than those lacking the coding sequence for this leader peptide. In support, expression of emGFPFt that had been codon-optimized for F. tularensis, yielded significantly enhanced fluorescence than its non-optimized counterpart. Furthermore, fusing emGFP with coding sequence for a small N-terminal peptide (Serine-Lysine-Isoleucine-Lysine), which had previously been shown to inhibit ribosomal stalling, produced robust fluorescence when expressed in F. tularensis. These findings support the interpretation that 580N enhances the translation efficiency of fluorescent proteins in F. tularensis. Interestingly, expression of non-optimized 580N-emGFP produced greater fluorescence intensity than any other construct. Structural predictions suggested that RNA secondary structure also may be influencing translation efficiency. When expressed in Escherichia coli and Klebsiella pneumoniae bacteria, 580N-emGFP produced increased green fluorescence compared to untagged emGFP (neither allele was codon optimized for these bacteria). In conclusion, fusing the coding sequence for the 580N leader peptide to recombinant genes might serve as an economical alternative to codon optimization for enhancing protein expression in bacteria.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.