Chris L Adamson, Bonnie Alexander, Claire E Kelly, Gareth Ball, Richard Beare, Jeanie L Y Cheong, Alicia J Spittle, Lex W Doyle, Peter J Anderson, Marc L Seal, Deanne K Thompson
{"title":"Updates to the Melbourne Children's Regional Infant Brain Software Package (M-CRIB-S).","authors":"Chris L Adamson, Bonnie Alexander, Claire E Kelly, Gareth Ball, Richard Beare, Jeanie L Y Cheong, Alicia J Spittle, Lex W Doyle, Peter J Anderson, Marc L Seal, Deanne K Thompson","doi":"10.1007/s12021-024-09656-8","DOIUrl":null,"url":null,"abstract":"<p><p>The delineation of cortical areas on magnetic resonance images (MRI) is important for understanding the complexities of the developing human brain. The previous version of the Melbourne Children's Regional Infant Brain (M-CRIB-S) (Adamson et al. Scientific Reports, 10(1), 10, 2020) is a software package that performs whole-brain segmentation, cortical surface extraction and parcellation of the neonatal brain. Available cortical parcellation schemes in the M-CRIB-S are the adult-compatible 34- and 31-region per hemisphere Desikan-Killiany (DK) and Desikan-Killiany-Tourville (DKT), respectively. We present a major update to the software package which achieves two aims: 1) to make the voxel-based segmentation outputs derived from the Freesurfer-compatible M-CRIB scheme, and 2) to improve the accuracy of whole-brain segmentation and cortical surface extraction. Cortical surface extraction has been improved with additional steps to improve penetration of the inner surface into thin gyri. The improved cortical surface extraction is shown to increase the robustness of measures such as surface area, cortical thickness, and cortical volume.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09656-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The delineation of cortical areas on magnetic resonance images (MRI) is important for understanding the complexities of the developing human brain. The previous version of the Melbourne Children's Regional Infant Brain (M-CRIB-S) (Adamson et al. Scientific Reports, 10(1), 10, 2020) is a software package that performs whole-brain segmentation, cortical surface extraction and parcellation of the neonatal brain. Available cortical parcellation schemes in the M-CRIB-S are the adult-compatible 34- and 31-region per hemisphere Desikan-Killiany (DK) and Desikan-Killiany-Tourville (DKT), respectively. We present a major update to the software package which achieves two aims: 1) to make the voxel-based segmentation outputs derived from the Freesurfer-compatible M-CRIB scheme, and 2) to improve the accuracy of whole-brain segmentation and cortical surface extraction. Cortical surface extraction has been improved with additional steps to improve penetration of the inner surface into thin gyri. The improved cortical surface extraction is shown to increase the robustness of measures such as surface area, cortical thickness, and cortical volume.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.