Xinming Hu, Desheng Li, Jiangtao Zhan, Changmin Yang, Pengfei Wang, Xusong Meng, Sheng Xu, Xianping Che, Lei Xu
{"title":"<i>microRNA-141-3p</i> Suppressed the Progression of the Clear Cell Renal Cell Carcinoma by Targeting <i>Transforming Growth Factor Beta 2</i> Gene Expression.","authors":"Xinming Hu, Desheng Li, Jiangtao Zhan, Changmin Yang, Pengfei Wang, Xusong Meng, Sheng Xu, Xianping Che, Lei Xu","doi":"10.1089/dna.2023.0405","DOIUrl":null,"url":null,"abstract":"<p><p>Clear cell renal cell carcinoma (ccRCC) is a malignant tumor of kidney epithelial cells, one of the most common tumors in the world. Transforming growth factor beta (TGFβ)1 is a crucial factor that induces epithelial-mesenchymal transition (EMT) in cancer cells. <i>microRNA-141-3p (miR-141-3p)</i> is a microRNA that is considered a tumor suppressor. However, the role and mechanism of <i>miR-141-3p</i> in TGFβ1-induced ccRCC cells are not fully understood. This study investigated the roles of <i>miR-141-3p</i> and its target gene in regulating EMT in ccRCC development. 786-0 and Caki-1cells were treated with TGFβ1 to induce EMT. The levels of <i>miR-141-3p</i> and TGFβ2 were determined by quantitative real-time polymerase chain reaction and Western blotting. The progression of EMT was evaluated by E-cadherin detection by immunofluorescence, and E-cadherin, N-cadherin, and vimentin detection by Western blotting. Furthermore, migration and invasion capacities were assessed using a Transwell system. The direct binding of <i>miR-141-3p</i> with the target gene <i>TGFβ2</i> was confirmed by dual luciferase reporter gene assay. Results indicated that TGFβ1 treatment decreased the protein abundance of E-cadherin while increasing the protein expression of N-cadherin and vimentin, indicating TGFβ1-induced EMT was constructed successfully. Moreover, TGFβ1 treatment repressed the expression of <i>miR-141-3p</i>. <i>miR-141-3p</i> mimics reversed the effect of TGFβ1 on the migration, invasion, and expression of E-cadherin, N-cadherin, and vimentin. The <i>miR-141-3p</i> directly binds with the 3' untranslated region of <i>TGFβ2</i> mRNA and suppresses its expression. Furthermore, TGFβ2 overexpression abrogated the above changes regulated by <i>miR-141-3p</i> mimics. Taken together, <i>miR-141-3p</i> inhibited TGFβ1-induced EMT by suppressing the migration and invasion of ccRCC cells via directly targeting <i>TGFβ2</i> gene expression.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"245-257"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/dna.2023.0405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignant tumor of kidney epithelial cells, one of the most common tumors in the world. Transforming growth factor beta (TGFβ)1 is a crucial factor that induces epithelial-mesenchymal transition (EMT) in cancer cells. microRNA-141-3p (miR-141-3p) is a microRNA that is considered a tumor suppressor. However, the role and mechanism of miR-141-3p in TGFβ1-induced ccRCC cells are not fully understood. This study investigated the roles of miR-141-3p and its target gene in regulating EMT in ccRCC development. 786-0 and Caki-1cells were treated with TGFβ1 to induce EMT. The levels of miR-141-3p and TGFβ2 were determined by quantitative real-time polymerase chain reaction and Western blotting. The progression of EMT was evaluated by E-cadherin detection by immunofluorescence, and E-cadherin, N-cadherin, and vimentin detection by Western blotting. Furthermore, migration and invasion capacities were assessed using a Transwell system. The direct binding of miR-141-3p with the target gene TGFβ2 was confirmed by dual luciferase reporter gene assay. Results indicated that TGFβ1 treatment decreased the protein abundance of E-cadherin while increasing the protein expression of N-cadherin and vimentin, indicating TGFβ1-induced EMT was constructed successfully. Moreover, TGFβ1 treatment repressed the expression of miR-141-3p. miR-141-3p mimics reversed the effect of TGFβ1 on the migration, invasion, and expression of E-cadherin, N-cadherin, and vimentin. The miR-141-3p directly binds with the 3' untranslated region of TGFβ2 mRNA and suppresses its expression. Furthermore, TGFβ2 overexpression abrogated the above changes regulated by miR-141-3p mimics. Taken together, miR-141-3p inhibited TGFβ1-induced EMT by suppressing the migration and invasion of ccRCC cells via directly targeting TGFβ2 gene expression.