{"title":"Phenotypic lags influence rapid evolution throughout a drought cycle.","authors":"Haley A Branch, Daniel N Anstett, Amy L Angert","doi":"10.1093/evolut/qpae037","DOIUrl":null,"url":null,"abstract":"<p><p>Climate anomalies are increasing and posing strong selection, which can lead to rapid evolution. This is occurring on a backdrop of interannual variability that might weaken or even reverse selection. However, the effect of interannual climatic variability on rapid evolution is rarely considered. We study the climatic differences that contribute to rapid evolution throughout a 7-year period, encompassing a severe drought across 12 populations of Mimulus cardinalis (scarlet monkeyflower). Plants were grown in a common greenhouse environment under wet and dry treatments, where specific leaf area and date of flowering were measured. We examine the association between trait values and different climate metrics at different time periods, including the collection year, prior years, and cumulative metrics across sequential years. Of the climatic variables we assessed, we find that anomalies in mean annual precipitation best describe trait differences over our study period. Past climates, of 1-2 years prior, are often related to trait values in a conflicting direction to collection-year climate. Uncovering these complex climatic impacts on evolution is critical to better predict and interpret the impacts of climate change.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae037","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate anomalies are increasing and posing strong selection, which can lead to rapid evolution. This is occurring on a backdrop of interannual variability that might weaken or even reverse selection. However, the effect of interannual climatic variability on rapid evolution is rarely considered. We study the climatic differences that contribute to rapid evolution throughout a 7-year period, encompassing a severe drought across 12 populations of Mimulus cardinalis (scarlet monkeyflower). Plants were grown in a common greenhouse environment under wet and dry treatments, where specific leaf area and date of flowering were measured. We examine the association between trait values and different climate metrics at different time periods, including the collection year, prior years, and cumulative metrics across sequential years. Of the climatic variables we assessed, we find that anomalies in mean annual precipitation best describe trait differences over our study period. Past climates, of 1-2 years prior, are often related to trait values in a conflicting direction to collection-year climate. Uncovering these complex climatic impacts on evolution is critical to better predict and interpret the impacts of climate change.
期刊介绍:
Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.