A Perspective on Various Facets of Nanoemulsions and its Commercial Utilities.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Assay and drug development technologies Pub Date : 2024-04-01 Epub Date: 2024-03-14 DOI:10.1089/adt.2023.042
Isha Mishra, Raghav Mishra, Ashutosh Dubey, Prashant Kumar Dhakad
{"title":"A Perspective on Various Facets of Nanoemulsions and its Commercial Utilities.","authors":"Isha Mishra, Raghav Mishra, Ashutosh Dubey, Prashant Kumar Dhakad","doi":"10.1089/adt.2023.042","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>Nanotechnology is a captivating contemporary technology owing to its extensive range of potential applications. This study emphasizes nanomaterials, substances with a size <100 nm, offering better qualities than coarse particles. Nanoparticles have several advantages compared with conventional drug delivery methods, including enhanced bioavailability and a larger surface area because of their smaller particle size. These characteristics make the nanoparticles a viable clinical candidate. Controlled-release drug delivery systems and targeted drug delivery systems rely heavily on nanoparticles. Because traditional drug delivery methods fail to achieve targeted drug delivery, resulting in toxicity, low bioavailability, poor therapeutic outcomes, and so on, these drug nanoparticles excel in all these areas. Researchers are already interested in developing drug delivery systems such as niosomes, bilosomes, and dendrimers. Nanoemulsion is one of these technologies; nanoemulsions outperform traditional emulsions in terms of pharmacodynamics and pharmacokinetics. Nanoemulsion effectively surpasses the constraints of standard emulsions, primarily by offering enhanced bioavailability, reduced toxicity, improved absorption, and the potential to be used in targeted drug delivery or controlled-release drug delivery systems. This particular work explores several aspects of nanoemulsions, including their constituents, classification, techniques for preparation, criteria for assessment, commercial applications, and future prospects.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"97-117"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2023.042","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Nanotechnology is a captivating contemporary technology owing to its extensive range of potential applications. This study emphasizes nanomaterials, substances with a size <100 nm, offering better qualities than coarse particles. Nanoparticles have several advantages compared with conventional drug delivery methods, including enhanced bioavailability and a larger surface area because of their smaller particle size. These characteristics make the nanoparticles a viable clinical candidate. Controlled-release drug delivery systems and targeted drug delivery systems rely heavily on nanoparticles. Because traditional drug delivery methods fail to achieve targeted drug delivery, resulting in toxicity, low bioavailability, poor therapeutic outcomes, and so on, these drug nanoparticles excel in all these areas. Researchers are already interested in developing drug delivery systems such as niosomes, bilosomes, and dendrimers. Nanoemulsion is one of these technologies; nanoemulsions outperform traditional emulsions in terms of pharmacodynamics and pharmacokinetics. Nanoemulsion effectively surpasses the constraints of standard emulsions, primarily by offering enhanced bioavailability, reduced toxicity, improved absorption, and the potential to be used in targeted drug delivery or controlled-release drug delivery systems. This particular work explores several aspects of nanoemulsions, including their constituents, classification, techniques for preparation, criteria for assessment, commercial applications, and future prospects.

透视纳米乳剂的方方面面及其商业用途。
纳米技术因其广泛的潜在应用而成为一项令人着迷的当代技术。本研究强调的是纳米材料,即尺寸小于 0.1 微米的物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信