Kimberly R. Beisner , Rebecca E. Travis , David A. Alvarez , Larry B. Barber , Jacob A. Fleck , Jeramy R. Jasmann
{"title":"Temporal variability and sources of PFAS in the Rio Grande, New Mexico through an arid urban area using multiple tracers and high-frequency sampling","authors":"Kimberly R. Beisner , Rebecca E. Travis , David A. Alvarez , Larry B. Barber , Jacob A. Fleck , Jeramy R. Jasmann","doi":"10.1016/j.emcon.2024.100314","DOIUrl":null,"url":null,"abstract":"<div><p>Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment but sources are not well defined for temporal and spatial aspects within an urban environment, and especially for an arid urban environment subject to seasonal short term high-intensity precipitation events. A focused diel sampling was conducted in the summer of 2021 to assess the temporal and spatial variability of PFAS in the Rio Grande near Albuquerque, New Mexico and showed an order of magnitude increase of PFAS as it flows through the Albuquerque urban area. Discrete samples were collected at two different locations on the Rio Grande in addition to wastewater treatment plant (WWTP) effluent that discharges directly to the Rio Grande between the sampling locations. Short-term high-intensity precipitation events occurred during the study period and mobilized PFAS from urban runoff. Dissolved organic matter composed of tryptophan-like organic substances and refined fuel and fuel byproducts, characteristic of an urban signature, were also related to the precipitation events. The PFAS in discharge from the WWTP was consistent over a 24-h period with slight differences in some compounds. Wastewater presence on the Rio Grande downstream of the WWTP was evidenced by a gadolinium anomaly as well as increases in several other trace elements, total dissolved nitrogen, and fluorescence indicators, in addition to PFAS. PFAS varied depending on source contribution, where urban runoff was associated with PFOA, PFOS, and PFBA, whereas PFHxA and PFPeA were associated with wastewater effluent. In addition, passive polar organic chemical integrative samplers (POCIS) using hydrophilic-lipid balance (HLB) sorption media were deployed for a month at two locations on the Rio Grande to assess longer term PFAS concentrations. The POCIS results show some compounds (PFPeA and PFHpA) were greater than the average concentration from discrete samples, whereas other compounds (PFHxA, PFOA, PFDA, and PFNA) were lower in the POCIS, and PFOS was very similar between the two. The POCIS did not detect PFBA, which may be related to the HLB media not performing well for short chain PFAS compounds. The results show promise for integrative samplers utilizing sorbent media. More detailed investigation of the spatial and temporal variability of water chemistry on the Rio Grande as it flows through Albuquerque could provide information applicable to urban areas worldwide.</p></div>","PeriodicalId":11539,"journal":{"name":"Emerging Contaminants","volume":"10 3","pages":"Article 100314"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405665024000155/pdfft?md5=b1623199fd55abefc96be24403bbdab9&pid=1-s2.0-S2405665024000155-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Contaminants","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405665024000155","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment but sources are not well defined for temporal and spatial aspects within an urban environment, and especially for an arid urban environment subject to seasonal short term high-intensity precipitation events. A focused diel sampling was conducted in the summer of 2021 to assess the temporal and spatial variability of PFAS in the Rio Grande near Albuquerque, New Mexico and showed an order of magnitude increase of PFAS as it flows through the Albuquerque urban area. Discrete samples were collected at two different locations on the Rio Grande in addition to wastewater treatment plant (WWTP) effluent that discharges directly to the Rio Grande between the sampling locations. Short-term high-intensity precipitation events occurred during the study period and mobilized PFAS from urban runoff. Dissolved organic matter composed of tryptophan-like organic substances and refined fuel and fuel byproducts, characteristic of an urban signature, were also related to the precipitation events. The PFAS in discharge from the WWTP was consistent over a 24-h period with slight differences in some compounds. Wastewater presence on the Rio Grande downstream of the WWTP was evidenced by a gadolinium anomaly as well as increases in several other trace elements, total dissolved nitrogen, and fluorescence indicators, in addition to PFAS. PFAS varied depending on source contribution, where urban runoff was associated with PFOA, PFOS, and PFBA, whereas PFHxA and PFPeA were associated with wastewater effluent. In addition, passive polar organic chemical integrative samplers (POCIS) using hydrophilic-lipid balance (HLB) sorption media were deployed for a month at two locations on the Rio Grande to assess longer term PFAS concentrations. The POCIS results show some compounds (PFPeA and PFHpA) were greater than the average concentration from discrete samples, whereas other compounds (PFHxA, PFOA, PFDA, and PFNA) were lower in the POCIS, and PFOS was very similar between the two. The POCIS did not detect PFBA, which may be related to the HLB media not performing well for short chain PFAS compounds. The results show promise for integrative samplers utilizing sorbent media. More detailed investigation of the spatial and temporal variability of water chemistry on the Rio Grande as it flows through Albuquerque could provide information applicable to urban areas worldwide.
期刊介绍:
Emerging Contaminants is an outlet for world-leading research addressing problems associated with environmental contamination caused by emerging contaminants and their solutions. Emerging contaminants are defined as chemicals that are not currently (or have been only recently) regulated and about which there exist concerns regarding their impact on human or ecological health. Examples of emerging contaminants include disinfection by-products, pharmaceutical and personal care products, persistent organic chemicals, and mercury etc. as well as their degradation products. We encourage papers addressing science that facilitates greater understanding of the nature, extent, and impacts of the presence of emerging contaminants in the environment; technology that exploits original principles to reduce and control their environmental presence; as well as the development, implementation and efficacy of national and international policies to protect human health and the environment from emerging contaminants.