Existence and regularity of global attractors for a Kirchhoff wave equation with strong damping and memory

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bin Yang , Yuming Qin , Alain Miranville , Ke Wang
{"title":"Existence and regularity of global attractors for a Kirchhoff wave equation with strong damping and memory","authors":"Bin Yang ,&nbsp;Yuming Qin ,&nbsp;Alain Miranville ,&nbsp;Ke Wang","doi":"10.1016/j.nonrwa.2024.104096","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the existence and regularity of global attractor <span><math><mi>A</mi></math></span> for a Kirchhoff wave equation with strong damping and memory in <span><math><mi>H</mi></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, respectively. In order to obtain the existence of <span><math><mi>A</mi></math></span>, we mainly use the energy method in the priori estimations, and then verify the asymptotic compactness of the semigroup by the method of contraction function. Finally, by decomposing the weak solutions into two parts and some elaborate calculations, we prove the regularity of <span><math><mi>A</mi></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000361","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the existence and regularity of global attractor A for a Kirchhoff wave equation with strong damping and memory in H and H1, respectively. In order to obtain the existence of A, we mainly use the energy method in the priori estimations, and then verify the asymptotic compactness of the semigroup by the method of contraction function. Finally, by decomposing the weak solutions into two parts and some elaborate calculations, we prove the regularity of A.

具有强阻尼和记忆的基尔霍夫波方程全局吸引子的存在性和正则性
本文主要研究在 H 和 H1 中分别具有强阻尼和强记忆的基尔霍夫波方程的全局吸引子 A 的存在性和正则性。为了得到 A 的存在性,我们主要采用能量法进行先验估计,然后用收缩函数法验证半群的渐近紧凑性。最后,通过将弱解分解为两部分和一些精细的计算,我们证明了 A 的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信