{"title":"Visualization of Ice Crystal Behavior in Mouse Oocytes During High-Speed Quench Cooling and Ice Inhibition by Antifreezing Hydrogels.","authors":"Xin Li, Shuyong Zhang, Yuqi Zhang, Xinli Zhou","doi":"10.1089/bio.2023.0108","DOIUrl":null,"url":null,"abstract":"<p><p>Oocyte vitrification has become a widely adopted method in clinical practice. However, the solidification behavior and its impact on oocytes during the ultrarapid cooling process remain poorly understood. In this study, we established a system and methodology to observe crystallization behavior in oocytes during quench cooling and warming. Subsequently, the threshold concentration of cryoprotective agents (CPAs) required for oocyte vitrification was determined through a visualization method. The results demonstrated that the ice front could not be observed in the image sequence when using 16.5% DMSO +16.5% EG during high-speed quench cooling (2821.58°C/min). Finally, oocytes were encapsulated with an antifreezing hydrogel (7.5% EG +7.5% DMSO +0.5% alginate) and subjected to high-speed quench cooling. No ice crystals appeared in the antifreezing hydrogel-encapsulated oocytes at a low concentration of osmotic CPA (2.4 M). This research opens up new possibilities for oocyte vitrification with a reduced concentration of CPA.</p>","PeriodicalId":55358,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":"404-412"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0108","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Oocyte vitrification has become a widely adopted method in clinical practice. However, the solidification behavior and its impact on oocytes during the ultrarapid cooling process remain poorly understood. In this study, we established a system and methodology to observe crystallization behavior in oocytes during quench cooling and warming. Subsequently, the threshold concentration of cryoprotective agents (CPAs) required for oocyte vitrification was determined through a visualization method. The results demonstrated that the ice front could not be observed in the image sequence when using 16.5% DMSO +16.5% EG during high-speed quench cooling (2821.58°C/min). Finally, oocytes were encapsulated with an antifreezing hydrogel (7.5% EG +7.5% DMSO +0.5% alginate) and subjected to high-speed quench cooling. No ice crystals appeared in the antifreezing hydrogel-encapsulated oocytes at a low concentration of osmotic CPA (2.4 M). This research opens up new possibilities for oocyte vitrification with a reduced concentration of CPA.
Biopreservation and BiobankingBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
自引率
12.50%
发文量
114
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.