Vasorin Exocytosed from Glioma Cells Facilitates Angiogenesis via VEGFR2/AKT Signaling Pathway.

IF 4.1 2区 医学 Q2 CELL BIOLOGY
Ying Zhong, Hui Kang, Ziqing Ma, Jiayu Li, Zixi Qin, Zixuan Zhang, Peiwen Li, Ying Zhong, Lihui Wang
{"title":"Vasorin Exocytosed from Glioma Cells Facilitates Angiogenesis via VEGFR2/AKT Signaling Pathway.","authors":"Ying Zhong, Hui Kang, Ziqing Ma, Jiayu Li, Zixi Qin, Zixuan Zhang, Peiwen Li, Ying Zhong, Lihui Wang","doi":"10.1158/1541-7786.MCR-23-0469","DOIUrl":null,"url":null,"abstract":"<p><p>Glioma is a highly vascularized tumor of the central nervous system. Angiogenesis plays a predominant role in glioma progression and is considered an important therapeutic target. Our previous study showed that vasorin (VASN), a transmembrane protein, is overexpressed in glioma and promotes angiogenesis; however, the potential mechanism remains unclear. In this study, we found that human vascular endothelial cells (hEC) co-cultured with VASN-overexpressing glioma cells exhibited accelerated migration ability and increased expression of VASN originated from glioma cells. VASN was found in exosomes secreted by glioma cells and could be taken up by hECs. hECs showed more edge filopodia and significantly upregulated expression of endothelial tip cell marker gene and protein levels after co-culture with VASN-overexpressing glioma cells. In clinical glioma tissue and orthotopic transplantation glioma tissue, the vascular density and the number of vascular endothelial cells with a tip cell phenotype in VASN-overexpressed tissues were significantly higher than in tissues with low expression. At the molecular level, VASN interacted with VEGFR2 and caused internalization and autophosphorylation of VEGFR2 protein, and then activated the AKT signaling pathway. Our study collectively reveals the function and mechanism of VASN in facilitating angiogenesis in glioma, providing a new therapeutic target for glioma.</p><p><strong>Implications: </strong>These findings demonstrate that VASN exocytosed from glioma cells enhanced the migration of vascular endothelial cells by VEGFR2/AKT signaling pathway.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"668-681"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-23-0469","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioma is a highly vascularized tumor of the central nervous system. Angiogenesis plays a predominant role in glioma progression and is considered an important therapeutic target. Our previous study showed that vasorin (VASN), a transmembrane protein, is overexpressed in glioma and promotes angiogenesis; however, the potential mechanism remains unclear. In this study, we found that human vascular endothelial cells (hEC) co-cultured with VASN-overexpressing glioma cells exhibited accelerated migration ability and increased expression of VASN originated from glioma cells. VASN was found in exosomes secreted by glioma cells and could be taken up by hECs. hECs showed more edge filopodia and significantly upregulated expression of endothelial tip cell marker gene and protein levels after co-culture with VASN-overexpressing glioma cells. In clinical glioma tissue and orthotopic transplantation glioma tissue, the vascular density and the number of vascular endothelial cells with a tip cell phenotype in VASN-overexpressed tissues were significantly higher than in tissues with low expression. At the molecular level, VASN interacted with VEGFR2 and caused internalization and autophosphorylation of VEGFR2 protein, and then activated the AKT signaling pathway. Our study collectively reveals the function and mechanism of VASN in facilitating angiogenesis in glioma, providing a new therapeutic target for glioma.

Implications: These findings demonstrate that VASN exocytosed from glioma cells enhanced the migration of vascular endothelial cells by VEGFR2/AKT signaling pathway.

从胶质瘤细胞中排出的 Vasorin 可通过 VEGFR2/AKT 信号通路促进血管生成。
胶质瘤是一种血管高度扩张的中枢神经系统肿瘤。血管生成在胶质瘤的发展过程中起着主导作用,被认为是一个重要的治疗靶点。我们之前的研究表明,胶质瘤中的跨膜蛋白 Vasorin(VASN)过度表达并促进血管生成,但其潜在机制仍不清楚。本研究发现,人血管内皮细胞(hECs)与过表达 VASN 的胶质瘤细胞共培养后,表现出加速迁移的能力,并且源于胶质瘤细胞的 VASN 表达增加。与过表达 VASN 的胶质瘤细胞共培养后,hECs 表现出更多的边缘丝状体,内皮顶端细胞标记基因和蛋白水平的表达显著上调。在临床胶质瘤组织和正位移植胶质瘤组织中,VASN高表达组织的血管密度和具有尖端细胞表型的血管内皮细胞数量明显高于低表达组织。在分子水平上,VASN与VEGFR2相互作用,导致VEGFR2蛋白内化和自身磷酸化,进而激活AKT信号通路。我们的研究共同揭示了VASN促进胶质瘤血管生成的功能和机制,为胶质瘤提供了一个新的治疗靶点。意义:这些研究结果表明,胶质瘤细胞外排的VASN通过VEGFR2/AKT信号通路促进了血管内皮细胞的迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信