{"title":"Research on the high temperature calibration of the electromagnetic damping generator applied to the rotary steerable system","authors":"Zequn Li, Desheng Li, Tong Zhao, Benzhen Guo","doi":"10.3233/jae-220309","DOIUrl":null,"url":null,"abstract":"The Electromagnetic Damping Generator (EDG) used for petroleum exploration is faced with the problem of high local temperature during its downhole work. To avoid the damage to its internal circuit caused by high temperature, the key EDG circuit is required to be heat-resistant based on the electromagnetic induction principle and the current heating effect. First of all, the working condition with the maximum heating power was figured out after studying the heating power characteristics of EDG. Then the multi-field coupling model of the temperature field, electromagnetic field and structure of the damper, as well as its iterative analytic model were established to identify the relationship between the temperature rise of the key location of the damper part and its working time in the downhole environment and the room-temperature experimental environment, which provided data support for EDG optimization design. Finally, a EDG prototype was developed, and the test bench was set up by replacing the load with resistors to verify the accuracy of the iterative analytical model. The results showed that the temperature value calculated by the model well fit the experimental value. Therefore, the downhole operation reliability of the EDG and the safety of corresponding bench tests are guaranteed, which has certain guiding significance for EDG optimization design and its experimental study.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"135 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220309","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The Electromagnetic Damping Generator (EDG) used for petroleum exploration is faced with the problem of high local temperature during its downhole work. To avoid the damage to its internal circuit caused by high temperature, the key EDG circuit is required to be heat-resistant based on the electromagnetic induction principle and the current heating effect. First of all, the working condition with the maximum heating power was figured out after studying the heating power characteristics of EDG. Then the multi-field coupling model of the temperature field, electromagnetic field and structure of the damper, as well as its iterative analytic model were established to identify the relationship between the temperature rise of the key location of the damper part and its working time in the downhole environment and the room-temperature experimental environment, which provided data support for EDG optimization design. Finally, a EDG prototype was developed, and the test bench was set up by replacing the load with resistors to verify the accuracy of the iterative analytical model. The results showed that the temperature value calculated by the model well fit the experimental value. Therefore, the downhole operation reliability of the EDG and the safety of corresponding bench tests are guaranteed, which has certain guiding significance for EDG optimization design and its experimental study.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.