Choong-Hee Kim, Seul-Yi Lee, Kyong Yop Rhee, Soo-Jin Park
{"title":"Carbon-based composites in biomedical applications: a comprehensive review of properties, applications, and future directions","authors":"Choong-Hee Kim, Seul-Yi Lee, Kyong Yop Rhee, Soo-Jin Park","doi":"10.1007/s42114-024-00846-1","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon materials have emerged as a rapidly advancing category of high-performance materials that have garnered significant attention across various scientific and technological disciplines. Their exceptional biochemical properties render them highly suitable for diverse biomedical applications, including implantation, artificial joints, bioimaging, tissue and bone engineering, and scaffold fabrication. However, a more systematic approach is required to fully exploit the potential of carbon-based materials in the biomedical realm, necessitating extensive and collaborative research to address the existing challenges, which comprehensive long-term stability studies, the surface properties and investigate the toxicity of biomedical materials. This review paper aims to provide a comprehensive overview of carbon materials, elucidating their inherent advantages and highlighting their increasingly prominent role in biomedical applications. After a brief introduction of carbonaceous materials, we discuss innovative deposition strategies that can be utilized to artificially replicate desired properties, such as biocompatibility and toxicology, within complex structures. Further, this paper serves as a valuable resource to harness the potential of carbon materials in the realm of biomedical applications. Last, we conclude with a discussion on the significance of continuous exploration in propelling further advancements within this captivating field.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-00846-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00846-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon materials have emerged as a rapidly advancing category of high-performance materials that have garnered significant attention across various scientific and technological disciplines. Their exceptional biochemical properties render them highly suitable for diverse biomedical applications, including implantation, artificial joints, bioimaging, tissue and bone engineering, and scaffold fabrication. However, a more systematic approach is required to fully exploit the potential of carbon-based materials in the biomedical realm, necessitating extensive and collaborative research to address the existing challenges, which comprehensive long-term stability studies, the surface properties and investigate the toxicity of biomedical materials. This review paper aims to provide a comprehensive overview of carbon materials, elucidating their inherent advantages and highlighting their increasingly prominent role in biomedical applications. After a brief introduction of carbonaceous materials, we discuss innovative deposition strategies that can be utilized to artificially replicate desired properties, such as biocompatibility and toxicology, within complex structures. Further, this paper serves as a valuable resource to harness the potential of carbon materials in the realm of biomedical applications. Last, we conclude with a discussion on the significance of continuous exploration in propelling further advancements within this captivating field.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.