Shirley Díaz, Héctor Gonzáles Mora, William Gacitúa, Cecilia Bustos, Pablo Reyes-Contreras, María Graciela Aguayo
{"title":"Maximizing bolaina wood utilization: extraction of cellulose nanofibers from sawdust waste","authors":"Shirley Díaz, Héctor Gonzáles Mora, William Gacitúa, Cecilia Bustos, Pablo Reyes-Contreras, María Graciela Aguayo","doi":"10.1007/s00107-024-02061-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the utilization of bolaina sawdust waste from the Peruvian Amazon for the production of cellulose nanofibers (CNFs). Bolaina is known for its rapid growth and extensive wood usage, which generate significant amounts of sawdust waste. The objective of this research was to physicochemically study this biomass source and the conversion of this waste into valuable nanocellulosic materials. The results showed that CNF yields from holocellulose (CNF-BH) and alpha-cellulose (CNF-Bα) gave high nanofibrillation yields of 80.6% and 74.7%, respectively. The CNFs were disintegrated into nanoscale fibers using microfluidizer treatment, resulting in CNF-BH displaying a thicker, gel-like aspect, while CNF-Bα showed a more liquid aspect. The FTIR spectra showed peaks associated with -CH<sub>2</sub> groups, C = O stretching vibrations of carboxyl and acetyl groups in hemicelluloses, and cellulose I and II vibrations. TGA analysis demonstrated that both CNFs had two stages of degradation, with a maximum peak degradation temperature of 240 °C in the first stage and 310 to 350 °C in the second stage. The XRD patterns of CNF-BH and CNF-Bα showed differences in the crystallinity index, with values of 68.1% and 75.4%, respectively. The differences in crystallinity between the two CNFs can be explained by the alkaline purification method to which the alpha-cellulose sample was subjected. Overall, the CNFs exhibited a high crystallinity index and thermal stability, making them promising candidates for various applications in materials science and aiding in the development of sustainable materials.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"82 4","pages":"1037 - 1047"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-024-02061-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the utilization of bolaina sawdust waste from the Peruvian Amazon for the production of cellulose nanofibers (CNFs). Bolaina is known for its rapid growth and extensive wood usage, which generate significant amounts of sawdust waste. The objective of this research was to physicochemically study this biomass source and the conversion of this waste into valuable nanocellulosic materials. The results showed that CNF yields from holocellulose (CNF-BH) and alpha-cellulose (CNF-Bα) gave high nanofibrillation yields of 80.6% and 74.7%, respectively. The CNFs were disintegrated into nanoscale fibers using microfluidizer treatment, resulting in CNF-BH displaying a thicker, gel-like aspect, while CNF-Bα showed a more liquid aspect. The FTIR spectra showed peaks associated with -CH2 groups, C = O stretching vibrations of carboxyl and acetyl groups in hemicelluloses, and cellulose I and II vibrations. TGA analysis demonstrated that both CNFs had two stages of degradation, with a maximum peak degradation temperature of 240 °C in the first stage and 310 to 350 °C in the second stage. The XRD patterns of CNF-BH and CNF-Bα showed differences in the crystallinity index, with values of 68.1% and 75.4%, respectively. The differences in crystallinity between the two CNFs can be explained by the alkaline purification method to which the alpha-cellulose sample was subjected. Overall, the CNFs exhibited a high crystallinity index and thermal stability, making them promising candidates for various applications in materials science and aiding in the development of sustainable materials.
期刊介绍:
European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets.
European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.