{"title":"Optimized Ensemble Machine Learning Approach for Emotion Detection from Thermal Images","authors":"Jayaprakash Katual, Amit Kaul","doi":"10.1142/s0218001424510029","DOIUrl":null,"url":null,"abstract":"<p>Emotions indicate the feelings of the individual which are linked with personal experiences, moods, and affective states. Detection of emotion can be helpful in many fields like maintaining a patient’s psychological well-being, surveillance, driver monitoring, etc. In this paper, an effective machine learning approach has been put forth for emotion detection where an ensemble of three out of five best-performing classifiers has been formed to enhance the classification accuracy. Two deep learning models (AlexNet and ResNet) have been optimally combined with <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-nearest neighbor (KNN). The optimal weights for ensemble weighted averaging of classifiers have been computed with aid of particle swarm optimization (PSO) and genetic algorithm (GA) optimization. The developed framework has been tested on two publicly available datasets. An overall accuracy of above 95% has been achieved on the testing set for both datasets. The best performance was obtained by training the classifiers with segmented images and combining them by using the weights obtained through PSO. The results depicted the efficiency of the optimized ensemble machine learning approach for all performance measures used in this study in comparison to the performance of individual classifiers and majority voting fusion.</p>","PeriodicalId":54949,"journal":{"name":"International Journal of Pattern Recognition and Artificial Intelligence","volume":"82 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pattern Recognition and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218001424510029","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Emotions indicate the feelings of the individual which are linked with personal experiences, moods, and affective states. Detection of emotion can be helpful in many fields like maintaining a patient’s psychological well-being, surveillance, driver monitoring, etc. In this paper, an effective machine learning approach has been put forth for emotion detection where an ensemble of three out of five best-performing classifiers has been formed to enhance the classification accuracy. Two deep learning models (AlexNet and ResNet) have been optimally combined with -nearest neighbor (KNN). The optimal weights for ensemble weighted averaging of classifiers have been computed with aid of particle swarm optimization (PSO) and genetic algorithm (GA) optimization. The developed framework has been tested on two publicly available datasets. An overall accuracy of above 95% has been achieved on the testing set for both datasets. The best performance was obtained by training the classifiers with segmented images and combining them by using the weights obtained through PSO. The results depicted the efficiency of the optimized ensemble machine learning approach for all performance measures used in this study in comparison to the performance of individual classifiers and majority voting fusion.
期刊介绍:
The International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) welcomes both theory-oriented and innovative applications articles on new developments and is of interest to both researchers in academia and industry.
The current scope of this journal includes:
• Pattern Recognition
• Machine Learning
• Deep Learning
• Document Analysis
• Image Processing
• Signal Processing
• Computer Vision
• Biometrics
• Biomedical Image Analysis
• Artificial Intelligence
In addition to regular papers describing original research work, survey articles on timely and important research topics are highly welcome. Special issues with focused topics within the scope of this journal are also published.