Christopher C. Stark, Natasha Latouf, Avi M. Mandell, Amber Young
{"title":"Optimized bandpasses for the Habitable Worlds Observatory’s exoEarth survey","authors":"Christopher C. Stark, Natasha Latouf, Avi M. Mandell, Amber Young","doi":"10.1117/1.jatis.10.1.014005","DOIUrl":null,"url":null,"abstract":"A primary scientific goal of the future Habitable Worlds Observatory will be the direct detection and characterization of Earth-like planets. Estimates of the exoplanet yields for this concept will help guide mission design through detailed trade studies. It is therefore critical that yield estimation codes optimally adapt observations to the mission’s performance parameters to ensure accurate trade studies. To aid in this, we implement wavelength optimization in yield calculations for the first time, allowing the yield code to determine the ideal detection and characterization bandpasses. We use this capability to confirm the observational wavelength assumptions made for the large UV/Optical/IR surveyor, design B (LUVOIR-B) study, namely that the optimum detection wavelength is 500 nm for the majority of targets and the optimum wavelength to detect water is near 1000 nm, given LUVOIR-B’s assumed instrument performance parameters. We show that including the wavelength-dependent albedo of an Earth twin as a prior provides no significant benefit to the yields of exoEarth candidates and caution against tuning observations to modern Earth twins. We also show that coronagraphs whose inner working angles are similar to step functions may benefit from wavelength optimization and demonstrate how wavelength-dependent instrument performance can impact the optimum wavelengths for detection and characterization. The optimization methods we implement automate wavelength selection and remove uncertainties regarding these choices, helping to adapt the observations to the instrument’s performance parameters.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.1.014005","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
A primary scientific goal of the future Habitable Worlds Observatory will be the direct detection and characterization of Earth-like planets. Estimates of the exoplanet yields for this concept will help guide mission design through detailed trade studies. It is therefore critical that yield estimation codes optimally adapt observations to the mission’s performance parameters to ensure accurate trade studies. To aid in this, we implement wavelength optimization in yield calculations for the first time, allowing the yield code to determine the ideal detection and characterization bandpasses. We use this capability to confirm the observational wavelength assumptions made for the large UV/Optical/IR surveyor, design B (LUVOIR-B) study, namely that the optimum detection wavelength is 500 nm for the majority of targets and the optimum wavelength to detect water is near 1000 nm, given LUVOIR-B’s assumed instrument performance parameters. We show that including the wavelength-dependent albedo of an Earth twin as a prior provides no significant benefit to the yields of exoEarth candidates and caution against tuning observations to modern Earth twins. We also show that coronagraphs whose inner working angles are similar to step functions may benefit from wavelength optimization and demonstrate how wavelength-dependent instrument performance can impact the optimum wavelengths for detection and characterization. The optimization methods we implement automate wavelength selection and remove uncertainties regarding these choices, helping to adapt the observations to the instrument’s performance parameters.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.