Yifan Zhang , Xia Sun , Yuhang Ye , Hale Oguzlu , Yeling Zhu , Jiaying Zhu , Katherine Le , Pu Yang , Feng Jiang
{"title":"All-cellulose hydrogel with ultrahigh stretchability exceeding 40000%","authors":"Yifan Zhang , Xia Sun , Yuhang Ye , Hale Oguzlu , Yeling Zhu , Jiaying Zhu , Katherine Le , Pu Yang , Feng Jiang","doi":"10.1016/j.mattod.2024.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>While cellulose-based stretchable hydrogels have been extensively explored in recent years, all-cellulose hydrogels continue to face the limitation of low stretchability (less than 250 %). Herein, for the first time, we fabricate an all-cellulose hydrogel with ultrahigh stretchability that can exceed 40000 % strain. By ring opening reaction on cellulose anhydroglucose unit rings, secondary hydroxyls are converted to primary hydroxyls, enabling enhanced chain flexibility, and facilitating the formation of abundant hydrogen bonds. As a result, the obtained hydrogel displays remarkable characteristics, including record-high stretchability (44200 %), rapid self-healing property (within seconds), and the unique ability to form cellulose fiber. With simple drawing, a smooth and flexible cellulose fiber can be obtained, demonstrating good processability and a high tensile strength of 226 MPa. Furthermore, the all-cellulose hydrogel can function as a human motion sensor and electrocardiogram electrode for monitoring physiological signals. This simple yet highly effective method will not only propel the advancement of ultrastretchable all-cellulose hydrogels but also create new possibilities for wearable device applications.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"74 ","pages":"Pages 67-76"},"PeriodicalIF":21.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369702124000282/pdfft?md5=253b9de89b55698b164452df9ad17b2b&pid=1-s2.0-S1369702124000282-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000282","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While cellulose-based stretchable hydrogels have been extensively explored in recent years, all-cellulose hydrogels continue to face the limitation of low stretchability (less than 250 %). Herein, for the first time, we fabricate an all-cellulose hydrogel with ultrahigh stretchability that can exceed 40000 % strain. By ring opening reaction on cellulose anhydroglucose unit rings, secondary hydroxyls are converted to primary hydroxyls, enabling enhanced chain flexibility, and facilitating the formation of abundant hydrogen bonds. As a result, the obtained hydrogel displays remarkable characteristics, including record-high stretchability (44200 %), rapid self-healing property (within seconds), and the unique ability to form cellulose fiber. With simple drawing, a smooth and flexible cellulose fiber can be obtained, demonstrating good processability and a high tensile strength of 226 MPa. Furthermore, the all-cellulose hydrogel can function as a human motion sensor and electrocardiogram electrode for monitoring physiological signals. This simple yet highly effective method will not only propel the advancement of ultrastretchable all-cellulose hydrogels but also create new possibilities for wearable device applications.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.