generAItor: Tree-in-the-Loop Text Generation for Language Model Explainability and Adaptation

IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Thilo Spinner, Rebecca Kehlbeck, Rita Sevastjanova, Tobias Stähle, Daniel A. Keim, Oliver Deussen, Mennatallah El-Assady
{"title":"generAItor: Tree-in-the-Loop Text Generation for Language Model Explainability and Adaptation","authors":"Thilo Spinner, Rebecca Kehlbeck, Rita Sevastjanova, Tobias Stähle, Daniel A. Keim, Oliver Deussen, Mennatallah El-Assady","doi":"10.1145/3652028","DOIUrl":null,"url":null,"abstract":"<p>Large language models (LLMs) are widely deployed in various downstream tasks, e.g., auto-completion, aided writing, or chat-based text generation. However, the considered output candidates of the underlying search algorithm are under-explored and under-explained. We tackle this shortcoming by proposing a <i>tree-in-the-loop</i> approach, where a visual representation of the beam search tree is the central component for analyzing, explaining, and adapting the generated outputs. To support these tasks, we present generAItor, a visual analytics technique, augmenting the central beam search tree with various task-specific widgets, providing targeted visualizations and interaction possibilities. Our approach allows interactions on multiple levels and offers an iterative pipeline that encompasses generating, exploring, and comparing output candidates, as well as fine-tuning the model based on adapted data. Our case study shows that our tool generates new insights in gender bias analysis beyond state-of-the-art template-based methods. Additionally, we demonstrate the applicability of our approach in a qualitative user study. Finally, we quantitatively evaluate the adaptability of the model to few samples, as occurring in text-generation use cases.</p>","PeriodicalId":48574,"journal":{"name":"ACM Transactions on Interactive Intelligent Systems","volume":"248 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Interactive Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652028","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) are widely deployed in various downstream tasks, e.g., auto-completion, aided writing, or chat-based text generation. However, the considered output candidates of the underlying search algorithm are under-explored and under-explained. We tackle this shortcoming by proposing a tree-in-the-loop approach, where a visual representation of the beam search tree is the central component for analyzing, explaining, and adapting the generated outputs. To support these tasks, we present generAItor, a visual analytics technique, augmenting the central beam search tree with various task-specific widgets, providing targeted visualizations and interaction possibilities. Our approach allows interactions on multiple levels and offers an iterative pipeline that encompasses generating, exploring, and comparing output candidates, as well as fine-tuning the model based on adapted data. Our case study shows that our tool generates new insights in gender bias analysis beyond state-of-the-art template-based methods. Additionally, we demonstrate the applicability of our approach in a qualitative user study. Finally, we quantitatively evaluate the adaptability of the model to few samples, as occurring in text-generation use cases.

generAItor:为语言模型的可解释性和适应性生成环中树文本
大语言模型(LLM)被广泛应用于各种下游任务,如自动完成、辅助写作或基于聊天的文本生成。然而,人们对底层搜索算法的输出候选结果探索不足,解释不够。针对这一不足,我们提出了一种 "环中树 "方法,即以波束搜索树的可视化表示作为分析、解释和调整生成输出的核心组件。为了支持这些任务,我们提出了一种可视化分析技术 generAItor,用各种特定任务小部件来增强中央波束搜索树,提供有针对性的可视化和交互可能性。我们的方法允许多层次的互动,并提供了一个迭代管道,包括生成、探索和比较候选输出,以及根据调整后的数据对模型进行微调。我们的案例研究表明,我们的工具在性别偏见分析方面产生了新的见解,超越了最先进的基于模板的方法。此外,我们还在一项定性用户研究中展示了我们方法的适用性。最后,我们定量评估了模型对少量样本的适应性,如在文本生成使用案例中出现的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Interactive Intelligent Systems
ACM Transactions on Interactive Intelligent Systems Computer Science-Human-Computer Interaction
CiteScore
7.80
自引率
2.90%
发文量
38
期刊介绍: The ACM Transactions on Interactive Intelligent Systems (TiiS) publishes papers on research concerning the design, realization, or evaluation of interactive systems that incorporate some form of machine intelligence. TIIS articles come from a wide range of research areas and communities. An article can take any of several complementary views of interactive intelligent systems, focusing on: the intelligent technology, the interaction of users with the system, or both aspects at once.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信