H. Alqahtani , C.F. Borges , D.Lj. Djukić , R.M. Mutavdžić Djukić , L. Reichel , M.M. Spalević
{"title":"Computation of pairs of related Gauss-type quadrature rules","authors":"H. Alqahtani , C.F. Borges , D.Lj. Djukić , R.M. Mutavdžić Djukić , L. Reichel , M.M. Spalević","doi":"10.1016/j.apnum.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><div><span>The evaluation of Gauss-type quadrature rules is an important topic in scientific computing. To determine estimates or bounds for the quadrature error of a </span>Gauss rule often another related quadrature rule is evaluated, such as an associated Gauss-Radau or Gauss-Lobatto rule, an anti-Gauss rule, an averaged rule, an optimal averaged rule, or a Gauss-Kronrod rule when the latter exists. We discuss how pairs of a Gauss rule and a related Gauss-type quadrature rule can be computed efficiently by a divide-and-conquer method.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 32-42"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424000515","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The evaluation of Gauss-type quadrature rules is an important topic in scientific computing. To determine estimates or bounds for the quadrature error of a Gauss rule often another related quadrature rule is evaluated, such as an associated Gauss-Radau or Gauss-Lobatto rule, an anti-Gauss rule, an averaged rule, an optimal averaged rule, or a Gauss-Kronrod rule when the latter exists. We discuss how pairs of a Gauss rule and a related Gauss-type quadrature rule can be computed efficiently by a divide-and-conquer method.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.