{"title":"Structural, point-free, non-Hausdorff topological realization of Borel groupoid actions","authors":"Ruiyuan Chen","doi":"10.1017/fms.2024.25","DOIUrl":null,"url":null,"abstract":"<p>We extend the Becker–Kechris topological realization and change-of-topology theorems for Polish group actions in several directions. For Polish group actions, we prove a single result that implies the original Becker–Kechris theorems, as well as Sami’s and Hjorth’s sharpenings adapted levelwise to the Borel hierarchy; automatic continuity of Borel actions via homeomorphisms and the equivalence of ‘potentially open’ versus ‘orbitwise open’ Borel sets. We also characterize ‘potentially open’ <span>n</span>-ary relations, thus yielding a topological realization theorem for invariant Borel first-order structures. We then generalize to groupoid actions and prove a result subsuming Lupini’s Becker–Kechris-type theorems for open Polish groupoids, newly adapted to the Borel hierarchy, as well as topological realizations of actions on fiberwise topological bundles and bundles of first-order structures.</p><p>Our proof method is new even in the classical case of Polish groups and is based entirely on formal algebraic properties of category quantifiers; in particular, we make no use of either metrizability or the strong Choquet game. Consequently, our proofs work equally well in the non-Hausdorff context, for open quasi-Polish groupoids and more generally in the point-free context, for open localic groupoids.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.25","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We extend the Becker–Kechris topological realization and change-of-topology theorems for Polish group actions in several directions. For Polish group actions, we prove a single result that implies the original Becker–Kechris theorems, as well as Sami’s and Hjorth’s sharpenings adapted levelwise to the Borel hierarchy; automatic continuity of Borel actions via homeomorphisms and the equivalence of ‘potentially open’ versus ‘orbitwise open’ Borel sets. We also characterize ‘potentially open’ n-ary relations, thus yielding a topological realization theorem for invariant Borel first-order structures. We then generalize to groupoid actions and prove a result subsuming Lupini’s Becker–Kechris-type theorems for open Polish groupoids, newly adapted to the Borel hierarchy, as well as topological realizations of actions on fiberwise topological bundles and bundles of first-order structures.
Our proof method is new even in the classical case of Polish groups and is based entirely on formal algebraic properties of category quantifiers; in particular, we make no use of either metrizability or the strong Choquet game. Consequently, our proofs work equally well in the non-Hausdorff context, for open quasi-Polish groupoids and more generally in the point-free context, for open localic groupoids.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.